Algorithms to compute the topology of orientable real algebraic surfaces

We present constructive algorithms to determine the topological type of a non-singular orientable real algebraic projective surface S in the real projective space, starting from a polynomial equation with rational coefficients for S. We address this question when there exists a line in RP3 not intersecting the surface, which is a decidable problem; in the case of quartic surfaces, when this condition is always fulfilled, we give a procedure to find a line disjoint from the surface. Our algorithm computes the homology of the various connected components of the surface in a finite number of steps, using as a basic tool Morse theory. The entire procedure has been implemented in Axiom.

[1]  Lu Yang,et al.  Recent Advances on Determining the Number of Real Roots of Parametric Polynomials , 1999, J. Symb. Comput..

[2]  Ravi P. Agarwal,et al.  Numerical Mathematics Singapore 1988 , 1988 .

[3]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[4]  Lu Yang,et al.  A complete discrimination system for polynomials , 1996 .

[5]  Ilia Itenberg,et al.  Real Enriques Surfaces , 2000 .

[6]  S. Basu,et al.  COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY , 1999 .

[7]  Tomás Recio,et al.  Sturm-Habicht sequence , 1989, ISSAC '89.

[8]  Fabrice Rouillier,et al.  Real Solving for Positive Dimensional Systems , 2002, J. Symb. Comput..

[9]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[10]  M'hammed El Kahoui,et al.  Computation of the Dual of a Plane Projective Curve , 2002, J. Symb. Comput..

[11]  Arjeh M. Cohen,et al.  Some tapas of computer algebra , 1999, Algorithms and computation in mathematics.

[12]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[13]  Marie-Françoise Roy Basic algorithms in real algebraic geometry and their complexity: from Sturm's theorem to the existential theory of reals , 1996 .

[14]  Patrizia M. Gianni,et al.  Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.

[15]  Felipe Cucker,et al.  On algorithms for real algebraic plane curves , 1991 .

[16]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[17]  Scott McCallum,et al.  A Polynomial-Time Algorithm for the Topological Type of a Real Algebraic Curve , 1984, J. Symb. Comput..

[18]  W. Habicht Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens , 1948 .

[19]  Marie-Françoise Roy,et al.  Sturm—Habicht Sequences, Determinants and Real Roots of Univariate Polynomials , 1998 .

[20]  W. Massey A basic course in algebraic topology , 1991 .

[21]  Joos Heintz,et al.  Single Exponential Path Finding in Semi-algebraic Sets, Part II: The General Case , 1994 .

[22]  Stefan Arnborg,et al.  Algebraic decomposition of regular curves , 1986, SYMSAC '86.

[23]  O. Viro,et al.  Progress in the topology of real algebraic varieties over the last six years , 1986 .

[24]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[25]  Patrizia M. Gianni,et al.  Some constructions for real algebraic curves , 2005, J. Symb. Comput..

[26]  Fabrice Rouillier,et al.  Symbolic Recipes for Real Solutions , 1999 .

[27]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[28]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[29]  Patrizia M. Gianni,et al.  Algorithms for the Shape of Semialgebraic Sets. A New Approach , 1991, AAECC.

[30]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[31]  J. Milnor Singular points of complex hypersurfaces , 1968 .

[32]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[33]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[34]  Laurent Gournay,et al.  Construction of roadmaps in semi-algebraic sets , 1993, Applicable Algebra in Engineering, Communication and Computing.

[35]  Emil J. Volcheck On computing the dual of a plane algebraic curve , 1997, ISSAC.

[36]  Dennis S. Arnon,et al.  Geometric Reasoning with Logic and Algebra , 1988, Artif. Intell..

[37]  Ian Stewart,et al.  Hilbert's sixteenth problem , 1987, Nature.

[38]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[39]  C. Traverso,et al.  Shape determination for real curves and surfaces , 1983, ANNALI DELL UNIVERSITA DI FERRARA.