On the Computational Complexity of Positive Linear Functionals on C[0;1]

The Lebesgue integration has been related to polynomial counting complexity in several ways, even when restricted to smooth functions. We prove analogue results for the integration operator associated with the Cantor measure as well as a more general second-order $${{\mathbf {\mathsf{{\#P}}}}} $$ -hardness criterion for such operators. We also give a simple criterion for relative polynomial time complexity and obtain a better understanding of the complexity of integration operators using the Lebesgue decomposition theorem.

[1]  Lane A. Hemaspaandra,et al.  The Complexity Theory Companion , 2002, Texts in Theoretical Computer Science An EATCS Series.

[2]  Matthias Schröder Admissible representations for probability measures , 2007, Math. Log. Q..

[3]  Arno Pauly,et al.  Function Spaces for Second-Order Polynomial Time , 2014, CiE.

[4]  Bruce M. Kapron,et al.  A New Characterization of Type-2 Feasibility , 1996, SIAM J. Comput..

[5]  Klaus Weihrauch Electronic Colloquium on Computational Complexity, Report No. 14 (2002) Computational Complexity on Computable Metric Spaces , 2022 .

[6]  Mathieu Hoyrup,et al.  Higher-order complexity in analysis , 2013 .

[7]  Walid Gomaa,et al.  Analytical properties of resource-bounded real functionals , 2014, J. Complex..

[8]  Vasco Brattka,et al.  Weihrauch degrees, omniscience principles and weak computability , 2009, J. Symb. Log..

[9]  H. Friedman,et al.  The computational complexity of maximization and integration , 1984 .

[10]  Stephen A. Cook,et al.  Computability and Complexity of Higher Type Functions , 1992 .

[11]  Bruce M. Kapron,et al.  On characterizations of the basic feasible functionals, Part I , 2001, Journal of Functional Programming.

[12]  Mariko Yasugi,et al.  Computability of Probability Distributions and Characteristic Functions , 2013, Log. Methods Comput. Sci..

[13]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[14]  Kojiro Higuchi,et al.  The degree structure of Weihrauch-reducibility , 2010, Log. Methods Comput. Sci..

[15]  Akitoshi Kawamura,et al.  Computational Complexity in Analysis and Geometry , 2011 .

[16]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[17]  Stephen A. Cook,et al.  Complexity Theory for Operators in Analysis , 2012, TOCT.

[18]  Pieter Collins,et al.  Computable Stochastic Processes , 2014, 1409.4667.

[19]  J. Shepherdson Computational Complexity of Real Functions , 1985 .

[20]  Klaus Weihrauch,et al.  Computability of the Radon-Nikodym Derivative , 2011, Comput..