A comparison of well-known ordinal notation systems for epsilon0
暂无分享,去创建一个
[1] Stephen G. Simpson,et al. Nonprovability of Certain Combinatorial Properties of Finite Trees , 1985 .
[2] Toshiyasu Arai. On the Slowly Well Orderedness of epsilon~0 , 2002 .
[3] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[4] G. Boolos. The logic of provability , 1993 .
[5] Andreas Weiermann,et al. A Uniform Approach to Fundamental Sequences and Hierarchies , 1994, Math. Log. Q..
[6] Stanley S. Wainer,et al. Chapter III - Hierarchies of Provably Recursive Functions , 1998 .
[7] G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .
[8] Lev D. Beklemishev. The Worm principle , 2003 .
[9] Toshiyasu Arai. On the Slowly Well Orderedness of epsilon0 , 2002, Math. Log. Q..
[10] Michael Rathjen,et al. Proof-Theoretic Investigations on Kruskal's Theorem , 1993, Ann. Pure Appl. Log..
[11] Lorenzo Carlucci. Worms, gaps, and hydras , 2005, Math. Log. Q..
[12] J. Girard. Proof Theory and Logical Complexity , 1989 .
[13] J. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .
[14] Solomon Feferman,et al. Systems of predicative analysis, II: Representations of ordinals , 1968, Journal of Symbolic Logic.
[15] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[16] Wilfried Buchholz,et al. A new system of proof-theoretic ordinal functions , 1986, Ann. Pure Appl. Log..
[17] R. Otter. The Number of Trees , 1948 .
[18] J. Paris,et al. Accessible Independence Results for Peano Arithmetic , 1982 .
[19] Rick L. Smith. The Consistency Strengths of Some Finite Forms of the Higman and Kruskal Theorems , 1985 .
[20] Solomon Feferman,et al. Systems of predicative analysis , 1964, Journal of Symbolic Logic.
[21] K. Schütte,et al. Predicative Well-Orderings , 1965 .
[22] Lev D. Beklemishev,et al. Provability algebras and proof-theoretic ordinals, I , 2001, Ann. Pure Appl. Log..
[23] Ryu Hasegawa,et al. Well-Ordering of Algebras and Kruskal's Theorem , 1994, Logic, Language and Computation.
[24] Dick H. J. Jongh,et al. Well-partial orderings and hierarchies , 1977 .
[25] Andreas Weiermann. Analytic combinatorics, proof-theoretic ordinals, and phase transitions for independence results , 2005, Ann. Pure Appl. Log..
[26] Andreas Weiermann,et al. An application of graphical enumeration to PA* , 2003, Journal of Symbolic Logic.
[27] Andreas Weiermann,et al. Phasenübergänge in Logik und Kombinatorik , 2005 .
[28] Martin Loebl,et al. On undecidability of the weakened Kruskal Theorem , 1987 .
[29] Andreas Weiermann. Analytic combinatorics for a certain well-ordered class of iterated exponential terms , 2005 .
[30] Akshay Chandra Dey,et al. Worms , 1919, The Indian medical gazette.
[31] Stephen G. Simpson,et al. Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen , 1985, Arch. Math. Log..