Genetic changes associated with the acquisition of androgen-independent growth, tumorigenicity and metastatic potential in a prostate cancer model.

[1]  T. Tammela,et al.  Analysis of genetic changes underlying local recurrence of prostate carcinoma during androgen deprivation therapy. , 1995, The American journal of pathology.

[2]  Stefan Joos,et al.  Mapping of chromosomal gains and losses in prostate cancer by comparative genomic hybridization , 1995, Genes, chromosomes & cancer.

[3]  Jorma Isola,et al.  In vivo amplification of the androgen receptor gene and progression of human prostate cancer , 1995, Nature Genetics.

[4]  T. Visakorpi,et al.  Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. , 1995, Cancer research.

[5]  R. Bookstein,et al.  Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer , 1994, Genes, chromosomes & cancer.

[6]  W. Kuo,et al.  Increased copy number at 20q13 in breast cancer: defining the critical region and exclusion of candidate genes. , 1994, Cancer research.

[7]  J Piper,et al.  Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors , 1994, Genes, chromosomes & cancer.

[8]  L. Chung,et al.  Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. , 1994, Cancer research.

[9]  M. Gleave,et al.  Derivation of androgen‐independent human LNCaP prostatic cancer cell sublines: Role of bone stromal cells , 1994, International journal of cancer.

[10]  S. Brewster,et al.  Somatic allelic loss at the DCC, APC, nm23-H1 and p53 tumor suppressor gene loci in human prostatic carcinoma. , 1994, The Journal of urology.

[11]  J. Ragoussis,et al.  Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma. , 1993, British Journal of Cancer.

[12]  D. Pinkel,et al.  Comparative Genomic Hybridization for Molecular Cytogenetic Analysis of Solid Tumors , 2022 .

[13]  F. Mitelman,et al.  Chromosome abnormalities are associated with unfavorable outcome in prostatic cancer patients. , 1992, The Journal of urology.

[14]  V. P. Collins,et al.  Allelotyping of human prostatic adenocarcinoma. , 1991, Genomics.

[15]  J. Trent,et al.  Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. , 1991, Cancer research.

[16]  P L Pearson,et al.  Allelotype of human breast carcinoma: a second major site for loss of heterozygosity is on chromosome 6q. , 1991, Oncogene.

[17]  M. Gleave,et al.  Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. , 1991, Cancer research.

[18]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[19]  J. Horoszewicz,et al.  A high-resolution study of chromosome changes in a human prostatic carcinoma cell line (LNCaP). , 1984, Cancer genetics and cytogenetics.

[20]  G. Murphy,et al.  LNCaP model of human prostatic carcinoma. , 1983, Cancer research.

[21]  J. Lechner,et al.  Establishment and characterization of a human prostatic carcinoma cell line (PC-3). , 1979, Investigative urology.

[22]  D. Paulson,et al.  Isolation of a human prostate carcinoma cell line (DU 145) , 1978, International journal of cancer.

[23]  P. Wingo,et al.  Cancer statistics, 1995 , 1995, CA: a cancer journal for clinicians.

[24]  D Rutovitz,et al.  Computer image analysis of comparative genomic hybridization. , 1995, Cytometry.

[25]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[26]  J. Mulcahy,et al.  Carcinoma of the prostate. , 1978, The Journal of the Kentucky Medical Association.