The Astrophysical Formation of Asymmetric Molecules and the Emergence of a Chiral Bias

The biomolecular homochirality in living organisms has been investigated for decades, but its origin remains poorly understood. It has been shown that circular polarized light (CPL) and other energy sources are capable of inducing small enantiomeric excesses (ees) in some primary biomolecules, such as amino acids or sugars. Since the first findings of amino acids in carbonaceous meteorites, a scenario in which essential chiral biomolecules originate in space and are delivered by celestial bodies has arisen. Numerous studies have thus focused on their detection, identification, and enantiomeric excess calculations in extraterrestrial matrices. In this review we summarize the discoveries in amino acids, sugars, and organophosphorus compounds in meteorites, comets, and laboratory-simulated interstellar ices. Based on available analytical data, we also discuss their interactions with CPL in the ultraviolet (UV) and vacuum ultraviolet (VUV) regions, their abiotic chiral or achiral synthesis, and their enantiomeric distribution. Without doubt, further laboratory investigations and upcoming space missions are required to shed more light on our potential extraterrestrial molecular origins.

[1]  Kazumichi Nakagawa,et al.  Natural Circular Dichroism Spectra of Alanine and Valine Films in Vacuum Ultraviolet Region , 2009 .

[2]  U. Meierhenrich,et al.  Molecular chirality in meteorites and interstellar ices, and the chirality experiment on board the ESA cometary Rosetta mission. , 2015, Angewandte Chemie.

[3]  M. Wright,et al.  Formaldehyde in Comets C/1995 O1 (Hale-Bopp), C/2002 T7 (LINEAR), and C/2001 Q4 (NEAT): Investigating the Cometary Origin of H2CO , 2006 .

[4]  Jan Hendrik Bredehöft,et al.  Identification of diamino acids in the Murchison meteorite. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. M. Hollis,et al.  Interstellar Glycolaldehyde: The First Sugar , 2000 .

[6]  L. Leshin,et al.  The Cradle of the Solar System , 2004, Science.

[7]  C. Herd,et al.  Compound‐specific carbon isotope compositions of aldehydes and ketones in the Murchison meteorite , 2018, Meteoritics & planetary science.

[8]  Y. Baraud,et al.  Anisotropy spectra of amino acids. , 2012, Angewandte Chemie.

[9]  H. Naraoka,et al.  A new family of extraterrestrial amino acids in the Murchison meteorite , 2017, Scientific Reports.

[10]  S. Pizzarello,et al.  The soluble organic compounds of the Bells meteorite: Not a unique or unusual composition , 2011 .

[11]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[12]  U. Meierhenrich,et al.  Interstellar ices: a possible scenario for symmetry breaking of extraterrestrial chiral organic molecules of prebiotic interest , 2019, 1902.04575.

[13]  S. Hoffmann,et al.  Light on Chirality: Absolute Asymmetric Formation of Chiral Molecules Relevant in Prebiotic Evolution. , 2017, ChemPlusChem.

[14]  G. F. Joyce The antiquity of RNA-based evolution , 2002, Nature.

[15]  Pascale Ehrenfreund,et al.  Indigenous amino acids in primitive CR meteorites , 2007 .

[16]  W. Bonner,et al.  Supernovae and life , 1983, Nature.

[17]  Laurent Nahon,et al.  Photonenergy-controlled symmetry breaking with circularly polarized light. , 2014, Angewandte Chemie.

[18]  F. Schloerb,et al.  HCN production from comet Halley , 1986 .

[19]  Steven B. Charnley,et al.  The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .

[20]  J. Oró,et al.  Comets and the formation of biochemical compounds on the primitive Earth – A review , 1991, Origins of life and evolution of the biosphere.

[21]  George W. Wetherill,et al.  Formation of the Earth , 1990 .

[22]  K. Kvenvolden,et al.  Stereoisomers of isovaline in the Murchison meteorite , 1975 .

[23]  Jacques Crovisier,et al.  The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy , 2004 .

[24]  Alec Moradpour,et al.  Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity , 1974 .

[25]  K. Soai,et al.  d- and l-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound , 1999 .

[26]  G. Miller,et al.  ON THE BIRTHPLACES OF STARS. , 1978 .

[27]  Andro C. Rios,et al.  Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites , 2016, Proceedings of the National Academy of Sciences.

[28]  W. Irvine Extraterrestrial Organic Matter: A review , 1998, Origins of life and evolution of the biosphere.

[29]  I. Powis,et al.  VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers. , 2014, The journal of physical chemistry. A.

[30]  G. M. HENDERSON,et al.  A New Method of Resolving a Racemic Compound , 1938, Nature.

[31]  Martin R. Lee,et al.  Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration , 2014 .

[32]  Laurent Nahon,et al.  Enantiomeric separation of complex organic molecules produced from irradiation of interstellar/circumstellar ice analogs , 2007 .

[33]  W. Bonner,et al.  The origin and amplification of biomolecular chirality , 2005, Origins of life and evolution of the biosphere.

[34]  John Robert Brucato,et al.  The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments , 2017, Astrobiology.

[35]  V. Parmon,et al.  Catalytic formation of monosaccharides: from the formose reaction towards selective synthesis. , 2014, ChemSusChem.

[36]  Daniel P. Glavin,et al.  The effects of parent body processes on amino acids in carbonaceous chondrites , 2010 .

[37]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[38]  Laurent Nahon,et al.  Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs , 2016, Science.

[39]  Kensei Kobayashi,et al.  Pyrolysis of complex organics following high-energy proton irradiation of a simple inorganic gas mixture , 2004 .

[40]  U. Meierhenrich,et al.  Quantitative enantioseparation of amino acids by comprehensive two-dimensional gas chromatography applied to non-terrestrial samples. , 2016, Journal of chromatography. A.

[41]  N. Lerner Influence of Allende minerals on deuterium retention of products of the Strecker synthesis , 1997 .

[42]  W. C. Johnson,et al.  Circular dichroism of the alkyl amino acids in the vacuum ultraviolet , 1973, Biopolymers.

[43]  J. Oro,et al.  On the reported optical activity of amino acids in the Murchison meteorite , 1983, Nature.

[44]  S. Pizzarello,et al.  Amino acids of the Murchison meteorite: I. Six carbon acyclic primary alpha-amino alkanoic acids. , 1981, Journal of molecular evolution.

[45]  Laurent Nahon,et al.  Photolysis of rac‐Leucine with Circularly Polarized Synchrotron Radiation , 2010, Chemistry & biodiversity.

[46]  T. Ueda,et al.  Two-Dimensional HPLC-MS/MS Determination of Multiple D-Amino Acid Residues in the Proteins Stored Under Various pH Conditions , 2017 .

[47]  F. R. Krueger Carbonaceous matter in cometary dust and coma. , 1995, Advances in space research : the official journal of the Committee on Space Research.

[48]  Cyril Szopa,et al.  Production of Hexamethylenetetramine in Photolyzed and Irradiated Interstellar Cometary Ice Analogs , 2001 .

[49]  A. Burton,et al.  A propensity for n‐ω‐amino acids in thermally altered Antarctic meteorites , 2012 .

[50]  T Saito,et al.  Characterization of complex organic compounds formed in simulated planetary atmospheres by the action of high energy particles. , 1999, Advances in space research : the official journal of the Committee on Space Research.

[51]  Laurent Nahon,et al.  NON-RACEMIC AMINO ACID PRODUCTION BY ULTRAVIOLET IRRADIATION OF ACHIRAL INTERSTELLAR ICE ANALOGS WITH CIRCULARLY POLARIZED LIGHT , 2011 .

[52]  S. Pizzarello,et al.  Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules , 2009 .

[53]  S. Pizzarello,et al.  Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution , 2012, Proceedings of the National Academy of Sciences.

[54]  E. Scott,et al.  Classification of Meteorites and Their Genetic Relationships , 2014 .

[55]  Uwe J. Meierhenrich,et al.  Amino Acids and the Asymmetry of Life , 2013, European Review.

[56]  S. Pizzarello,et al.  Amino acids of the Murchison meteorite. III. Seven carbon acyclic primary alpha-amino alkanoic acids. , 1986, Geochimica et cosmochimica acta.

[57]  S. Pizzarello,et al.  Amino acids in meteorites. , 1983, Advances in space research : the official journal of the Committee on Space Research.

[58]  Warren Belisle,et al.  Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth , 2001, Nature.

[59]  J. Greenberg Cosmic dust and our origins , 2002 .

[60]  K. Kvenvolden,et al.  Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite , 1970, Nature.

[61]  K. Kvenvolden,et al.  Amino Acids Indigenous to the Murray Meteorite , 1971, Science.

[62]  K. Yagi-Watanabe,et al.  Chiroptical study of α-aliphatic amino acid films in the vacuum ultraviolet region. , 2010, The journal of physical chemistry. A.

[63]  C. Szopa,et al.  MOMA: the challenge to search for organics and biosignatures on Mars , 2016, International Journal of Astrobiology.

[64]  A. Brack,et al.  Amino acids from ultraviolet irradiation of interstellar ice analogues , 2002, Nature.

[65]  Andrew Steele,et al.  Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry , 2015, Science.

[66]  Takahashi Junichi,et al.  Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light , 2007 .

[67]  K. Kvenvolden,et al.  Nonprotein amino acids in the murchison meteorite. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[68]  S. Sandford,et al.  Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites , 2018, Nature Communications.

[69]  Laurent Nahon,et al.  Aldehydes and sugars from evolved precometary ice analogs: Importance of ices in astrochemical and prebiotic evolution , 2015, Proceedings of the National Academy of Sciences.

[70]  P. Ehrenfreund,et al.  Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites , 2007 .

[71]  Kensei Kobayashi,et al.  Formation of Amino Acids from Possible Interstellar Media by γ-rays and UV Irradiation , 2002 .

[72]  T. Chakraborty,et al.  Synchrotron radiation circular dichroism spectroscopy of ribose and deoxyribose sugars, adenosine, AMP and dAMP nucleotides. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[73]  Nelson Rg,et al.  Optical properties of sugars. 3. Circular dichroism of aldo- and ketopyranose anomers. , 1976 .

[74]  M. K. Crombie,et al.  OSIRIS-REx: Sample Return from Asteroid (101955) Bennu , 2017, Space Science Reviews.

[75]  Jeremy Bailey,et al.  Astronomical Sources of Circularly Polarized Light and the Origin of Homochirality , 2001, Origins of life and evolution of the biosphere.

[76]  Y. Takano,et al.  DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL , 2016 .

[77]  John M. Hayes,et al.  Organic constituents of meteorites - A review. , 1967 .

[78]  Laurence D. Barron,et al.  True and false chirality and absolute asymmetric synthesis , 1986 .

[79]  Emmanuel Dartois,et al.  Laboratory studies of thermally processed H2O-CH3OH-CO2 ice mixtures and their astrophysical implications , 1999 .

[80]  P. Feldman,et al.  Carbon production in comet West 1975n. , 1976 .

[81]  Tachibana,et al.  Hayabusa 2 : Scientific importance of samples returned from C-type near-Earth asteroid ( 162173 ) 1999 JU 3 , 2014 .

[82]  R. Totty,et al.  The circular dichroism of pentoses , 1972 .

[83]  U. Meierhenrich,et al.  Derivatization and Multidimensional Gas‐Chromatographic Resolution of α‐Alkyl and α‐Dialkyl Amino Acid Enantiomers , 2014 .

[84]  K. Hamase,et al.  Enantioselective Determination of Extraterrestrial Amino Acids Using a Two-Dimensional Chiral High-Performance Liquid Chromatographic System , 2014 .

[85]  J. Lawless,et al.  Evidence for the Presence of Low Molecular Weight Alcohols and Carbonyl Compounds in the Murchison Meteorite , 1976 .

[86]  M. Engel,et al.  Distribution and enantiomeric composition of amino acids in the Murchison meteorite , 1982, Nature.

[87]  Scott A. Sandford,et al.  Mechanisms of Amino Acid Formation in Interstellar Ice Analogs , 2007 .

[88]  David E. Woon,et al.  Pathways to Glycine and Other Amino Acids in Ultraviolet-irradiated Astrophysical Ices Determined via Quantum Chemical Modeling , 2002 .

[89]  Y. Tsuda,et al.  Hayabusa2 Mission Overview , 2017 .

[90]  S. Pizzarello,et al.  Amino acids of the Murchison meteorite: II. Five carbon acyclic primary beta-, gamma-, and delta-amino alkanoic acids. , 1985, Geochimica et cosmochimica acta.

[91]  Asymmetric photochemistry and photochirogenesis. , 2002, Angewandte Chemie.

[92]  A. Burton,et al.  Amino acid analyses of R and CK chondrites , 2015 .

[93]  Ryo Kandori,et al.  Extended High Circular Polarization in the Orion Massive Star Forming Region: Implications for the Origin of Homochirality in the Solar System , 2010, Origins of Life and Evolution of Biospheres.

[94]  Y Yamagata,et al.  A hypothesis for the asymmetric appearance of biomolecules on earth. , 1966, Journal of theoretical biology.

[95]  T. Owen,et al.  Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko , 2016, Science Advances.

[96]  A. Weiss,et al.  Autocatalysis in the formose reaction , 1980 .

[97]  H. Kuninaka,et al.  Hayabusa2: Scientific importance of samples returned from C-type near-Earth asteroid (162173) 1999 JU3 , 2014 .

[98]  Laurent Nahon,et al.  ENANTIOMERIC EXCESSES INDUCED IN AMINO ACIDS BY ULTRAVIOLET CIRCULARLY POLARIZED LIGHT IRRADIATION OF EXTRATERRESTRIAL ICE ANALOGS: A POSSIBLE SOURCE OF ASYMMETRY FOR PREBIOTIC CHEMISTRY , 2014 .

[99]  Jun-ichi Takahashi,et al.  Circular dichroism of amino acids in the vacuum-ultraviolet region. , 2010, Angewandte Chemie.

[100]  J. M. Greenberg,et al.  Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium , 2005, Origins of life and evolution of the biosphere.

[101]  Laurent Nahon,et al.  The effects of circularly polarized light on amino acid enantiomers produced by the UV irradiation of interstellar ice analogs , 2006 .

[102]  Egon T. Degens,et al.  Organic compounds in stony meteorites , 1963 .

[103]  S. Pizzarello,et al.  Non-racemic amino acids in the Murray and Murchison meteorites. , 2000, Geochimica et cosmochimica acta.

[104]  K. Yagi-Watanabe,et al.  First observation of natural circular dichroism spectra in the extreme ultraviolet region using a polarizing undulator-based optical system and its polarization characteristics. , 2009, Journal of synchrotron radiation.

[105]  Michel Combes,et al.  The 2.5-12 μm spectrum of comet halley from the IKS-VEGA experiment , 1988 .

[106]  J. Elsila,et al.  Analyses of Aliphatic Aldehydes and Ketones in Carbonaceous Chondrites. , 2019, ACS earth & space chemistry.

[107]  Anisotropy-Guided Enantiomeric Enhancement in AlanineUsing Far-UV Circularly Polarized Light , 2015, Origins of Life and Evolution of Biospheres.

[108]  Cornelia Meinert,et al.  A new dimension in separation science: comprehensive two-dimensional gas chromatography. , 2012, Angewandte Chemie.

[109]  Geneviève Auger,et al.  A Detailed Study of the Amino Acids Produced from the Vacuum UV Irradiation of Interstellar Ice Analogs , 2008, Origins of Life and Evolution of Biospheres.

[110]  Laurent Nahon,et al.  Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. , 2005, Angewandte Chemie.

[111]  Jens Biele,et al.  Rosetta Lander - Landing and operations on comet 67P/Churyumov-Gerasimenko , 2016 .

[112]  Kensei Kobayashi,et al.  Experimental verification of photostability for free- and bound-amino acids exposed to γ-rays and UV irradiation , 2004 .

[113]  I. Pater,et al.  Radio Detection of Formaldehyde Emission from Comet Halley , 1989 .

[114]  W. Bonner,et al.  Asymmetric Adsorption of Alanine by Quartz , 1974, Science.

[115]  Jan Hendrik Bredehöft,et al.  Understanding photochirogenesis: solvent effects on circular dichroism and anisotropy spectroscopy. , 2014, Chirality.

[116]  Alexander G. G. M. Tielens,et al.  Interstellar Ice: The Infrared Space Observatory Legacy , 2004 .

[117]  W. Bonner,et al.  Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. , 1977, Journal of the American Chemical Society.

[118]  Takahashi Junichi,et al.  Photochemical abiotic synthesis of amino-acid precursors from simulated planetary atmospheres by vacuum ultraviolet light , 2005 .

[119]  K. Imai,et al.  Fluorimetric determination of secondary amino acids by 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole , 1981 .

[120]  Michael E. Zolensky,et al.  Nonracemic isovaline in the Murchison meteorite : Chiral distribution and mineral association , 2003 .

[121]  Werner Kuhn,et al.  The physical significance of optical rotatory power , 2022 .

[122]  Hans Balsiger,et al.  Interpretation of the ion mass spectra in the mass per charge range 25-35 amu/e obtained in the inner coma of Halley's comet by the HIS-sensor of the Giotto IMS experiment , 1991 .

[123]  J. Bada,et al.  Extraterrestrial Organic Compounds in Meteorites , 2002 .

[124]  Scott A. Sandford,et al.  Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues , 2002, Nature.

[125]  E. Herbst,et al.  A study of interstellar aldehydes and enols as tracers of a cosmic ray-driven nonequilibrium synthesis of complex organic molecules , 2016, Proceedings of the National Academy of Sciences.

[126]  Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy) , 2015, Science Advances.

[127]  R. G. Nelson,et al.  Optical properties of sugars. I. Circular dichroism of monomers at equilibrium , 1972 .

[128]  N. Lerner,et al.  Iminodicarboxylic acids in the Murchison meteorite: Evidence of Strecker reactions , 2005 .

[129]  Simone De LEUW,et al.  Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites , 2010 .

[130]  James P. Riehl,et al.  Circularly polarized luminescence spectroscopy , 1977 .

[131]  Daniel P. Glavin,et al.  Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies , 2009, Proceedings of the National Academy of Sciences.

[132]  Yuichi Utsumi,et al.  Abiotic synthesis of amino acids by x-ray irradiation of simple inorganic gases , 1999 .

[133]  Gianfranco Visentin,et al.  Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover , 2017, Astrobiology.

[134]  S. Pizzarello,et al.  Amino Acid Enantiomer Excesses in Meteorites: Origin and Significance , 1999 .

[135]  G. KARAGUNIS,et al.  A New Method of Resolving a Racemic Compound , 1938, Nature.

[136]  Ryo Kandori,et al.  NEAR-INFRARED CIRCULAR POLARIZATION IMAGES OF NGC 6334-V , 2013, 1302.2295.

[137]  K. Gekko,et al.  Vacuum-ultraviolet circular dichroism study of saccharides by synchrotron radiation spectrophotometry. , 2004, Carbohydrate research.

[138]  J. Eiler,et al.  Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites , 2007 .

[139]  J. Mayo Greenberg,et al.  Chirality in interstellar dust and in comets: Life from dead stars , 2008 .

[140]  J. Hough,et al.  Circular polarization in star-formation regions: implications for biomolecular homochirality. , 1998, Science.