Advanced Materials through Assembly of Nanocelluloses

There is an emerging quest for lightweight materials with excellent mechanical properties and economic production, while still being sustainable and functionalizable. They could form the basis of the future bioeconomy for energy and material efficiency. Cellulose has long been recognized as an abundant polymer. Modified celluloses were, in fact, among the first polymers used in technical applications; however, they were later replaced by petroleum-based synthetic polymers. Currently, there is a resurgence of interest to utilize renewable resources, where cellulose is foreseen to make again a major impact, this time in the development of advanced materials. This is because of its availability and properties, as well as economic and sustainable production. Among cellulose-based structures, cellulose nanofibrils and nanocrystals display nanoscale lateral dimensions and lengths ranging from nanometers to micrometers. Their excellent mechanical properties are, in part, due to their crystalline assembly via hydrogen bonds. Owing to their abundant surface hydroxyl groups, they can be easily modified with nanoparticles, (bio)polymers, inorganics, or nanocarbons to form functional fibers, films, bulk matter, and porous aerogels and foams. Here, some of the recent progress in the development of advanced materials within this rapidly growing field is reviewed.

[1]  F. Schacher,et al.  Hidden structural features of multicompartment micelles revealed by cryogenic transmission electron tomography. , 2014, ACS nano.

[2]  R. Venditti,et al.  Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. , 2010, Biomacromolecules.

[3]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[4]  Lei Jiang,et al.  Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose. , 2016, ACS applied materials & interfaces.

[5]  Rui L Reis,et al.  The potential of cellulose nanocrystals in tissue engineering strategies. , 2014, Biomacromolecules.

[6]  Jun Liu,et al.  Hemicellulose-reinforced nanocellulose hydrogels for wound healing application , 2016, Cellulose.

[7]  A. Mathew,et al.  In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium , 2017 .

[8]  M. Meyers,et al.  Structural Biological Materials: Critical Mechanics-Materials Connections , 2013, Science.

[9]  M. Boyce,et al.  Materials design principles of ancient fish armour. , 2008, Nature materials.

[10]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[11]  Maria Strømme,et al.  Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties , 2012 .

[12]  Satoshi Nakata,et al.  Mode selection of a camphor boat in a dual-circle canal , 2000 .

[13]  F. Schacher,et al.  Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites. , 2011, Biomacromolecules.

[14]  Michele Vendruscolo,et al.  Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils , 2007, Science.

[15]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[16]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[17]  C. Rodríguez-Abreu,et al.  Magneto-responsive hybrid materials based on cellulose nanocrystals , 2014, Cellulose.

[18]  K. Oksman,et al.  Dry-Spun Single-Filament Fibers Comprising Solely Cellulose Nanofibers from Bioresidue. , 2015, ACS applied materials & interfaces.

[19]  H. Fink,et al.  Structure formation of regenerated cellulose materials from NMMO-solutions , 2001 .

[20]  Wei Li,et al.  Preparation of entangled nanocellulose fibers from APMP and its magnetic functional property as matrix. , 2013, Carbohydrate polymers.

[21]  Robin H. A. Ras,et al.  Ionically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assembly. , 2013, Journal of materials chemistry. B.

[22]  R. Serimaa,et al.  Significance of xylan on the stability and water interactions of cellulosic nanofibrils , 2014 .

[23]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[24]  Andreas Walther,et al.  Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties. , 2010, Angewandte Chemie.

[25]  Y. Hsieh,et al.  Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing , 2014 .

[26]  K. Maniura‐Weber,et al.  TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules. , 2015, Biomacromolecules.

[27]  J. Nam,et al.  Graphene/cellulose nanocomposite paper with high electrical and mechanical performances , 2011 .

[28]  E. J. Foster,et al.  Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. , 2013, Biomacromolecules.

[29]  Marc A. Meyers,et al.  Biological materials: Functional adaptations and bioinspired designs , 2012 .

[30]  D. Gray Recent Advances in Chiral Nematic Structure and Iridescent Color of Cellulose Nanocrystal Films , 2016, Nanomaterials.

[31]  Thomas Gegenhuber,et al.  "Patchy" Carbon Nanotubes as Efficient Compatibilizers for Polymer Blends. , 2016, ACS macro letters.

[32]  A. Papageorgiou,et al.  Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels , 2016, Scientific Reports.

[33]  M. Pesonen,et al.  Anionic polysaccharides as templates for the synthesis of conducting polyaniline and as structural matrix for conducting biocomposites. , 2013, Macromolecular rapid communications.

[34]  A. Walther,et al.  Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites. , 2016, Biomacromolecules.

[35]  Yixiang Wang,et al.  Cellulose nanowhiskers and fiber alignment greatly improve mechanical properties of electrospun prolamin protein fibers. , 2014, ACS applied materials & interfaces.

[36]  Lars Wågberg,et al.  Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. , 2014, ACS nano.

[37]  G. P. Pandey,et al.  Advanced physical chemistry of carbon nanotubes. , 2015, Annual review of physical chemistry.

[38]  Mehmet Sarikaya,et al.  Selective detection of target proteins by peptide-enabled graphene biosensor. , 2014, Small.

[39]  Bruno Frka-Petesic,et al.  First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals , 2014 .

[40]  M. Faustini,et al.  Water Vapor Uptake of Ultrathin Films of Biologically Derived Nanocrystals: Quantitative Assessment with Quartz Crystal Microbalance and Spectroscopic Ellipsometry. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[41]  P. Foehr,et al.  Surgical Sutures Filled with Adipose-Derived Stem Cells Promote Wound Healing , 2014, PloS one.

[42]  Pieter Vandezande,et al.  Solvent resistant nanofiltration: separating on a molecular level. , 2008, Chemical Society reviews.

[43]  A. Walther,et al.  Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. , 2013, Biomacromolecules.

[44]  V. Thakur,et al.  Recent progress in cellulose nanocrystals: sources and production. , 2017, Nanoscale.

[45]  J. Seppälä,et al.  Modification of surface wettability through adsorption of partly fluorinated statistical and block polyelectrolytes from aqueous medium. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[46]  Bharat Bhushan,et al.  Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion , 2009 .

[47]  P. Laaksonen,et al.  Self-assembly of cellulose nanofibrils by genetically engineered fusion proteins , 2011 .

[48]  H. Chanzy,et al.  Liquid crystal‐type assembly of native cellulose‐glucuronoxylans extracted from plant cell wall , 1991, Biology of the cell.

[49]  S. Vignolini,et al.  Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets , 2017, Advanced materials.

[50]  R. Venditti,et al.  Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals. , 2009, ACS applied materials & interfaces.

[51]  Xiaogang Yang,et al.  Biomimicking the structure of silk fibers via cellulose nanocrystal as β-sheet crystallite , 2014 .

[52]  Hanneke Boerstoel,et al.  The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution , 2001 .

[53]  Hui-li Shao,et al.  Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. , 2017, Journal of materials chemistry. B.

[54]  D. Rentsch,et al.  Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water , 2014 .

[55]  D. Gray,et al.  Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate , 2014, Cellulose.

[56]  Zhiqiang Fang,et al.  Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. , 2016, Chemical reviews.

[57]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[58]  D. Bousfield,et al.  Cellulose nanofibril (CNF) reinforced starch insulating foams , 2014, Cellulose.

[59]  Kristin Syverud,et al.  Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels , 2014, Journal of biomaterials applications.

[60]  H. Sixta,et al.  Degradation and Crystallization of Cellulose in Hydrogen Chloride Vapor for High-Yield Isolation of Cellulose Nanocrystals. , 2016, Angewandte Chemie.

[61]  H. Liimatainen,et al.  Flocculation of municipal wastewaters with anionic nanocelluloses: Influence of nanocellulose characteristics on floc morphology and strength , 2014 .

[62]  T. Nishino,et al.  Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. , 2012, ACS applied materials & interfaces.

[63]  O. Ikkala,et al.  Aligning cellulose nanofibril dispersions for tougher fibers , 2017, Scientific Reports.

[64]  Joanna Aizenberg,et al.  Biological and Biomimetic Materials , 2009 .

[65]  H. Schaefer,et al.  Covalent hypercoordination: can carbon bind five methyl ligands? , 2014, Angewandte Chemie.

[66]  Lynn A. Capadona,et al.  A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. , 2007, Nature nanotechnology.

[67]  L. Wågberg,et al.  Superior Flame-Resistant Cellulose Nanofibril Aerogels Modified with Hybrid Layer-by-Layer Coatings. , 2017, ACS applied materials & interfaces.

[68]  L. Berglund,et al.  Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. , 2010, Nature nanotechnology.

[69]  Zhigang Xie,et al.  Indocyanine green-functionalized bottle brushes of poly(2-oxazoline) on cellulose nanocrystals for photothermal cancer therapy. , 2017, Journal of materials chemistry. B.

[70]  R. Nolte,et al.  Stiffness versus architecture of single helical polyisocyanopeptides , 2013 .

[71]  D. Cosgrove Growth of the plant cell wall , 2005, Nature Reviews Molecular Cell Biology.

[72]  H. Orelma,et al.  Surface Functionalized Nanofibrillar Cellulose (NFC) Film as a Platform for Immunoassays and Diagnostics , 2012, Biointerphases.

[73]  Arthur J. Ragauskas,et al.  High performance green barriers based on nanocellulose , 2014 .

[74]  N. Houbenov,et al.  Supracolloidal multivalent interactions and wrapping of dendronized glycopolymers on native cellulose nanocrystals. , 2014, Journal of the American Chemical Society.

[75]  L. Heath,et al.  Cellulose nanowhisker aerogels , 2010 .

[76]  Thomas Geiger,et al.  Cellulose Fibrils for Polymer Reinforcement , 2004 .

[77]  E. Ureña-Benavides,et al.  Cellulose Nanocrystal Reinforced Alginate Fibers—Biomimicry Meets Polymer Processing , 2012 .

[78]  Z. Cai,et al.  Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties , 2013 .

[79]  I. Manas‐Zloczower,et al.  Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties , 2015, Cellulose.

[80]  R. Elbaum,et al.  The Role of Wheat Awns in the Seed Dispersal Unit , 2007, Science.

[81]  Yonggang Yao,et al.  Anisotropic, Transparent Films with Aligned Cellulose Nanofibers , 2017, Advanced materials.

[82]  Wenshuai Chen,et al.  Comparative study of aerogels obtained from differently prepared nanocellulose fibers. , 2014, ChemSusChem.

[83]  Sarit S. Agasti,et al.  Gold nanoparticles in chemical and biological sensing. , 2012, Chemical reviews.

[84]  Qi Zhou,et al.  Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites. , 2017, ACS applied materials & interfaces.

[85]  O. Ikkala,et al.  Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. , 2012, Biomacromolecules.

[86]  O. Rojas,et al.  Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. , 2010, Biomacromolecules.

[87]  A. Isogai,et al.  Viscoelastic Properties of Core-Shell-Structured, Hemicellulose-Rich Nanofibrillated Cellulose in Dispersion and Wet-Film States. , 2016, Biomacromolecules.

[88]  K. Järvinen,et al.  Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices--enhanced stability and release. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[89]  Youssef Habibi,et al.  Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers , 2009 .

[90]  J. Sirviö,et al.  Bisphosphonate nanocellulose in the removal of vanadium(V) from water , 2016, Cellulose.

[91]  Kristi S Anseth,et al.  Bio-inspired 3D microenvironments: a new dimension in tissue engineering , 2016, Biomedical materials.

[92]  H. Orelma,et al.  Filaments with Affinity Binding and Wet Strength Can Be Achieved by Spinning Bifunctional Cellulose Nanofibrils. , 2017, Biomacromolecules.

[93]  Olli Ikkala,et al.  Healable, Stable and Stiff Hydrogels: Combining Conflicting Properties Using Dynamic and Selective Three‐Component Recognition with Reinforcing Cellulose Nanorods , 2014 .

[94]  O. Ikkala,et al.  Chiral Plasmonics Using Twisting along Cellulose Nanocrystals as a Template for Gold Nanoparticles , 2016, Advanced materials.

[95]  H. Roghani‐Mamaqani,et al.  Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior , 2014 .

[96]  A. Walther,et al.  Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space , 2017 .

[97]  Congde Qiao,et al.  Structure and rheological properties of cellulose nanocrystals suspension , 2016 .

[98]  M. Rutland,et al.  Non-ionic assembly of nanofibrillated cellulose and polyethylene glycol grafted carboxymethyl cellulose and the effect of aqueous lubrication in nanocomposite formation , 2013 .

[99]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[100]  H. Orelma,et al.  Generic method for attaching biomolecules via avidin-biotin complexes immobilized on films of regenerated and nanofibrillar cellulose. , 2012, Biomacromolecules.

[101]  J. Burdick,et al.  A practical guide to hydrogels for cell culture , 2016, Nature Methods.

[102]  Orlando J. Rojas,et al.  Immunosensors for C-Reactive Protein Based on Ultrathin Films of Carboxylated Cellulose Nanofibrils. , 2017, Biomacromolecules.

[103]  A. Mäkitie,et al.  Nanofibrillar cellulose wound dressing in skin graft donor site treatment. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[104]  W. Thielemans,et al.  Surface modification of cellulose nanocrystals. , 2014, Nanoscale.

[105]  David Hu,et al.  The Integument of Water-walking Arthropods: Form and Function , 2007 .

[106]  M. MacLachlan,et al.  Polymer and Mesoporous Silica Microspheres with Chiral Nematic Order from Cellulose Nanocrystals. , 2016, Angewandte Chemie.

[107]  Behnam Pourdeyhimi,et al.  Assessment of new high-performance fibers for advanced applications , 2003 .

[108]  Jun Ma,et al.  Aerogels based on carbon nanomaterials , 2016, Journal of Materials Science.

[109]  T. Elder,et al.  Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids , 2016 .

[110]  A. Isogai,et al.  Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials , 2011 .

[111]  Zhiqiang Fang,et al.  Transparent paper: fabrications, properties, and device applications , 2014 .

[112]  Meng Wang,et al.  Facile Template Synthesis of Microfibrillated Cellulose/Polypyrrole/Silver Nanoparticles Hybrid Aerogels with Electrical Conductive and Pressure Responsive Properties , 2015 .

[113]  O. Rojas,et al.  Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. , 2015, Biomacromolecules.

[114]  H. Tenhu,et al.  Molecular engineering of fracture energy dissipating sacrificial bonds into cellulose nanocrystal nanocomposites. , 2014, Angewandte Chemie.

[115]  Shujun Li,et al.  Fabrication of nano-crystalline cellulose with phosphoric acid and its full application in a modified polyurethane foam , 2013 .

[116]  M. Kellomäki,et al.  Piezoelectric Sensitivity of a Layered Film of Chitosan and Cellulose Nanocrystals , 2016 .

[117]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[118]  Anna Rising,et al.  Toward spinning artificial spider silk. , 2015, Nature chemical biology.

[119]  O. Rojas,et al.  Cilia-mimetic hairy surfaces based on end-immobilized nanocellulose colloidal rods. , 2013, Biomacromolecules.

[120]  P. Fischer,et al.  Ion-Induced Hydrogel Formation and Nematic Ordering of Nanocrystalline Cellulose Suspensions. , 2017, Biomacromolecules.

[121]  J. Sirviö,et al.  High-strength nanocellulose-talc hybrid barrier films. , 2013, ACS applied materials & interfaces.

[122]  A. Naderi,et al.  The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective , 2014, Cellulose.

[123]  Ullrich Steiner,et al.  Biomimetic layer-by-layer assembly of artificial nacre , 2012, Nature Communications.

[124]  N. Houbenov,et al.  Polymer Brushes on Cellulose Nanofibers: Modification, SI-ATRP, and Unexpected Degradation Processes , 2017 .

[125]  Olli Ikkala,et al.  Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[126]  E. Place,et al.  Complexity in biomaterials for tissue engineering. , 2009, Nature materials.

[127]  Z. Cai,et al.  Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels. , 2013, ACS applied materials & interfaces.

[128]  W. Thielemans,et al.  Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). , 2009, Langmuir : the ACS journal of surfaces and colloids.

[129]  Yves Grohens,et al.  Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. , 2016, Carbohydrate polymers.

[130]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[131]  V. T. Forsyth,et al.  Nanostructure of cellulose microfibrils in spruce wood , 2011, Proceedings of the National Academy of Sciences.

[132]  Robin H. A. Ras,et al.  Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. , 2011, ACS applied materials & interfaces.

[133]  T. V. D. van de Ven,et al.  Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils. , 2015, Carbohydrate polymers.

[134]  Qinmin Pan,et al.  Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes. , 2009, ACS applied materials & interfaces.

[135]  H. Jameel,et al.  Conversion Economics of Forest Biomaterials: Risk and Financial Analysis of CNC Manufacturing , 2017 .

[136]  W. Thielemans,et al.  Synthesis of cellulose nanocrystals bearing photocleavable grafts by ATRP , 2012 .

[137]  N. Baccile,et al.  Surface-Induced Frustration in Solid State Polymorphic Transition of Native Cellulose Nanocrystals. , 2017, Biomacromolecules.

[138]  B. Li,et al.  Carbohydrate Polymers , 2014 .

[139]  H. Zeng,et al.  Calcium Carbonate Nanotablets: Bridging Artificial to Natural Nacre , 2012, Advanced materials.

[140]  Qinglin Wu,et al.  Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. , 2013, Biomacromolecules.

[141]  J. Seppälä,et al.  Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers , 2011 .

[142]  F. MacKintosh,et al.  Ultra-responsive soft matter from strain-stiffening hydrogels , 2014, Nature Communications.

[143]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[144]  A. Buléon,et al.  Enthalpic studies of xyloglucan-cellulose interactions. , 2010, Biomacromolecules.

[145]  Madhu Kaushik,et al.  Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis , 2016 .

[146]  P. Chang,et al.  Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on Cyclodextrin inclusion , 2010 .

[147]  Yuanyuan Song,et al.  Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. , 2015, Nanoscale.

[148]  G. Camino,et al.  Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties. , 2015, ACS applied materials & interfaces.

[149]  O. Paris,et al.  Recent Progress in the Replication of Hierarchical Biological Tissues , 2013 .

[150]  R. Sun,et al.  Tough nanocomposite hydrogels from cellulose nanocrystals/poly(acrylamide) clusters: influence of the charge density, aspect ratio and surface coating with PEG , 2014, Cellulose.

[151]  Xuefeng Gao,et al.  Biophysics: Water-repellent legs of water striders , 2004, Nature.

[152]  Zhiqiang Fang,et al.  Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. , 2014, Nano letters.

[153]  N. Pan Exploring the significance of structural hierarchy in material systems—A review , 2014 .

[154]  S. Boufi,et al.  Cationic nanofibrillar cellulose with high antibacterial properties. , 2015, Carbohydrate polymers.

[155]  Haitao Liu,et al.  Novel method of ordering silver nanowires for synthesizing flexible films and their conductivity , 2016 .

[156]  M. Tirrell,et al.  Microsurface potential measurements: repulsive forces between polyelectrolyte brushes in the presence of multivalent counterions. , 2008, Langmuir.

[157]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[158]  Eduardo Saiz,et al.  A novel biomimetic approach to the design of high-performance ceramic–metal composites , 2010, Journal of The Royal Society Interface.

[159]  V. Kokol,et al.  Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag(+), Cu(2+) and Fe(3+) from industrial effluents. , 2015, Journal of hazardous materials.

[160]  Eiichi Kojima,et al.  Light-induced amphiphilic surfaces , 1997, Nature.

[161]  Jun Zhou,et al.  Self-Powered Human-Interactive Transparent Nanopaper Systems. , 2015, ACS nano.

[162]  Brendon M. Baker,et al.  Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues , 2012, Journal of Cell Science.

[163]  Morsyleide de Freitas Rosa,et al.  Nanocellulose in bio-based food packaging applications , 2017 .

[164]  T. Zimmermann,et al.  Effect of Surface Charge on Surface-Initiated Atom Transfer Radical Polymerization from Cellulose Nanocrystals in Aqueous Media. , 2016, Biomacromolecules.

[165]  Chao Gao,et al.  Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. , 2012, ACS nano.

[166]  O. Shoseyov,et al.  Insertion of nano-crystalline cellulose into epoxy resin via resilin to construct a novel elastic adhesive , 2014, Cellulose.

[167]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[168]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[169]  Julien Bras,et al.  Use of nanocellulose in printed electronics: a review. , 2016, Nanoscale.

[170]  H. Orelma,et al.  High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction , 2016, Cellulose.

[171]  Joshua D. Kittle,et al.  Effects of sulfate groups on the adsorption and activity of cellulases on cellulose substrates. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[172]  Dezhi Chen,et al.  Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers , 2015, Cellulose.

[173]  Yuanyuan Song,et al.  Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[174]  J. Burdick,et al.  Cationic poly(2-aminoethylmethacrylate) and poly(N-(2-aminoethylmethacrylamide) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. , 2015, Biomacromolecules.

[175]  O. Rojas,et al.  Cellulose nanocrystal-mediated synthesis of silver nanoparticles: role of sulfate groups in nucleation phenomena. , 2014, Biomacromolecules.

[176]  M. Bissell,et al.  Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[177]  G. Zhong,et al.  Cellulose composite aerogel for highly efficient electromagnetic interference shielding , 2015 .

[178]  Leopoldo C. Cancio,et al.  Burn wound healing and treatment: review and advancements , 2015, Critical Care.

[179]  Francisco del Monte,et al.  Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. , 2013, Chemical Society reviews.

[180]  Youssef Habibi,et al.  Key advances in the chemical modification of nanocelluloses. , 2014, Chemical Society reviews.

[181]  Andreas Walther,et al.  Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. , 2014, Biomacromolecules.

[182]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[183]  O. Ikkala,et al.  Modular Architecture of Protein Binding Units for Designing Properties of Cellulose Nanomaterials , 2015, Angewandte Chemie.

[184]  Jaakko V. I. Timonen,et al.  Multifunctional High‐Performance Biofibers Based on Wet‐Extrusion of Renewable Native Cellulose Nanofibrils , 2011, Advanced materials.

[185]  Scott Renneckar,et al.  Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. , 2011, Biomacromolecules.

[186]  A. Romano,et al.  Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions , 2012, Cellulose.

[187]  A. Gandini,et al.  Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan , 2017 .

[188]  J. Bras,et al.  Positive impact of cellulose nanofibrils on silver nanowire coatings for transparent conductive films , 2016 .

[189]  A. Bismarck,et al.  Direct Interfacial Modification of Nanocellulose Films for Thermoresponsive Membrane Templates. , 2016, ACS applied materials & interfaces.

[190]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[191]  G. Chambat,et al.  Non-electrostatic building of biomimetic cellulose-xyloglucan multilayers. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[192]  A. Bismarck,et al.  Cellulose nanocrystals by acid vapour: towards more effortless isolation of cellulose nanocrystals. , 2017, Faraday discussions.

[193]  Sung-Hoon Yoon,et al.  Near-neutral pre-extraction of hemicelluloses and subsequent kraft pulping of southern mixed hardwoods , 2011 .

[194]  Hongli Zhu,et al.  Highly transparent and flexible nanopaper transistors. , 2013, ACS nano.

[195]  L. Lucia,et al.  Soy protein–nanocellulose composite aerogels , 2013, Cellulose.

[196]  O. Ikkala,et al.  SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions , 2012, Cellulose.

[197]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[198]  Markus J Buehler,et al.  Silk-Its Mysteries, How It Is Made, and How It Is Used. , 2015, ACS biomaterials science & engineering.

[199]  J. J. Schneider,et al.  Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids , 2014 .

[200]  J. Sirviö,et al.  Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer. , 2014, Biomacromolecules.

[201]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[202]  B. Freeman,et al.  Surface Modification of Water Purification Membranes. , 2017, Angewandte Chemie.

[203]  F. Tian,et al.  Cellulose nanofibrils aerogels generated from jute fibers. , 2014, Carbohydrate polymers.

[204]  Arto Urtti,et al.  The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. , 2014, Stem cells and development.

[205]  Francois Barthelat,et al.  Structure and mechanics of interfaces in biological materials , 2016 .

[206]  D. Chaussy,et al.  Polypyrrole (PPy) chemical synthesis with xylan in aqueous medium and production of highly conducting PPy/nanofibrillated cellulose films and coatings , 2011 .

[207]  L. Berglund,et al.  Clay nanopaper as multifunctional brick and mortar fire protection coating—Wood case study , 2016 .

[208]  Ung-Jin Kim,et al.  Vacuum-assisted bilayer PEDOT:PSS/cellulose nanofiber composite film for self-standing, flexible, conductive electrodes. , 2017, Carbohydrate polymers.

[209]  J. Paltakari,et al.  Interactions between inorganic nanoparticles and cellulose nanofibrils , 2012, Cellulose.

[210]  B. P. Wilson,et al.  Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin films , 2017, Journal of Materials Science.

[211]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[212]  Robin H. A. Ras,et al.  Photoswitchable Superabsorbency Based on Nanocellulose Aerogels , 2011 .

[213]  John H T Luong,et al.  Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. , 2011, Small.

[214]  Levente Csoka,et al.  Piezoelectric Effect of Cellulose Nanocrystals Thin Films. , 2012, ACS macro letters.

[215]  Robin H. A. Ras,et al.  Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[216]  S. Veldhuis,et al.  Bionanocomposite Films from Resilin-CBD Bound to Cellulose Nanocrystals , 2015 .

[217]  Olli Ikkala,et al.  Strong and tough cellulose nanopaper with high specific surface area and porosity. , 2011, Biomacromolecules.

[218]  R. Carbonell,et al.  Bioactive cellulose nanofibrils for specific human IgG binding. , 2013, Biomacromolecules.

[219]  E. Kauppinen,et al.  Ambient‐Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use for Aerosol Collection and Templates for Transparent, Flexible Devices , 2015 .

[220]  Mariko Ago,et al.  Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. , 2012, Biomacromolecules.

[221]  J. Bras,et al.  Nanofibrillated Cellulose Surface Modification: A Review , 2013, Materials.

[222]  R. Venditti,et al.  Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. , 2012, Journal of colloid and interface science.

[223]  Paul Gatenholm,et al.  Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[224]  Yonggang Yao,et al.  Super‐Clear Nanopaper from Agro‐Industrial Waste for Green Electronics , 2017 .

[225]  R. Blossey Self-cleaning surfaces — virtual realities , 2003, Nature materials.

[226]  Xuan Yang,et al.  Chemically Cross-Linked Cellulose Nanocrystal Aerogels with Shape Recovery and Superabsorbent Properties , 2014 .

[227]  Se Youn Cho,et al.  Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals , 2014, Macromolecular Research.

[228]  K. Mazeau,et al.  The xyloglucan–cellulose assembly at the atomic scale , 2006, Biopolymers.

[229]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[230]  H. Brumer,et al.  Chemo-enzymatic assembly of clickable cellulose surfaces via multivalent polysaccharides. , 2012, ChemSusChem.

[231]  H. Santos,et al.  Photoluminescent Hybrids of Cellulose Nanocrystals and Carbon Quantum Dots as Cytocompatible Probes for in Vitro Bioimaging. , 2017, Biomacromolecules.

[232]  Q. Fu,et al.  Amphiphilic, ultralight, and multifunctional graphene/nanofibrillated cellulose aerogel achieved by cation-induced gelation and chemical reduction. , 2015, Nanoscale.

[233]  K. Lin,et al.  Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP , 2015 .

[234]  Lars Wågberg,et al.  Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. , 2013, Angewandte Chemie.

[235]  Selestina Gorgieva,et al.  Mechanically strong, flexible and thermally stable graphene oxide/nanocellulosic films with enhanced dielectric properties , 2016 .

[236]  Paul Gatenholm,et al.  Bacterial cellulose-based materials and medical devices: current state and perspectives , 2011, Applied Microbiology and Biotechnology.

[237]  G. Zhong,et al.  Phase assembly-induced transition of three dimensional nanofibril- to sheet-networks in porous cellulose with tunable properties , 2014, Cellulose.

[238]  J. Weaver,et al.  Hierarchical structural design for fracture resistance in the shell of the pteropod Clio pyramidata , 2015, Nature Communications.

[239]  R. Venditti,et al.  Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes. , 2011, Biomacromolecules.

[240]  L. Berglund,et al.  Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils , 2008 .

[241]  M. Penttilä,et al.  Elastic and pH-Responsive Hybrid Interfaces Created with Engineered Resilin and Nanocellulose. , 2017, Biomacromolecules.

[242]  O. Ikkala,et al.  Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. , 2011, Biomacromolecules.

[243]  F. Schacher,et al.  Rod-Like Nanoparticles with Striped and Helical Topography. , 2016, ACS macro letters.

[244]  M. Hsieh,et al.  Hazy Transparent Cellulose Nanopaper , 2017, Scientific Reports.

[245]  Leena‐Sisko Johansson,et al.  Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose , 2011 .

[246]  C. Brinker,et al.  Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage , 1995, Nature.

[247]  A. Nasibulin,et al.  Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression , 2016, RSC advances.

[248]  N. Morad,et al.  Characterization of biopolymeric flocculant (pectin) and organic synthetic flocculant (PAM): a comparative study on treatment and optimization in kaolin suspension. , 2010, Bioresource technology.

[249]  Feijun Wang,et al.  Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors , 2013 .

[250]  Young Ho Ko,et al.  Functionalized cucurbiturils and their applications. , 2007, Chemical Society reviews.

[251]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[252]  O. Ikkala,et al.  Interfacial Polyelectrolyte Complex Spinning of Cellulose Nanofibrils for Advanced Bicomponent Fibers. , 2017, Biomacromolecules.

[253]  Akira Isogai,et al.  Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system , 2005 .

[254]  E. Kumacheva,et al.  Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals. , 2015, Biomacromolecules.

[255]  Jun Liu,et al.  Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties. , 2014, Biomacromolecules.

[256]  Anne Corlu,et al.  Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. , 2014, Biomaterials.

[257]  H. Sehaqui,et al.  Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions , 2010 .

[258]  T. Verbiest,et al.  Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook , 2013, Advanced materials.

[259]  Christopher Thamm,et al.  Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s). , 2017, Biomacromolecules.

[260]  J. J. Valle-Delgado,et al.  Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid. , 2016, Colloids and surfaces. B, Biointerfaces.

[261]  V. Saikko,et al.  Structural characterization and tribological evaluation of quince seed mucilage , 2014 .

[262]  Huajian Gao,et al.  Nanotwin-governed toughening mechanism in hierarchically structured biological materials , 2016, Nature Communications.

[263]  T. Pääkkönen,et al.  Simultaneous preparation of cellulose nanocrystals and micron-sized porous colloidal particles of cellulose by TEMPO-mediated oxidation , 2015 .

[264]  Robin H. A. Ras,et al.  Sensitive Humidity‐Driven Reversible and Bidirectional Bending of Nanocellulose Thin Films as Bio‐Inspired Actuation , 2015 .

[265]  Markus Antonietti,et al.  Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. , 2015, Nature nanotechnology.

[266]  Robin H. A. Ras,et al.  Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. , 2011, ACS nano.

[267]  A. Mäkitie,et al.  Human stem cell decorated nanocellulose threads for biomedical applications. , 2016, Biomaterials.

[268]  H. Vali,et al.  Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization. , 2015, Journal of the American Chemical Society.

[269]  K. Mazeau,et al.  Wetting the (110) and (100) surfaces of Ibeta cellulose studied by molecular dynamics. , 2008, Biomacromolecules.

[270]  P. Friedel,et al.  pH-triggered aggregate shape of different generations lysine-dendronized maleimide copolymers with maltose shell. , 2012, Biomacromolecules.

[271]  Lina Zhang,et al.  Natural Materials Assembled, Biodegradable, and Transparent Paper-Based Electret Nanogenerator. , 2016, ACS applied materials & interfaces.

[272]  Shuwen Hu,et al.  “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications , 2013, Materials.

[273]  Xiaoxiong Zeng,et al.  Stabilizing oil-in-water emulsion with amorphous cellulose , 2015 .

[274]  Darrell H. Reneker,et al.  Electrospinning process and applications of electrospun fibers , 1995 .

[275]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[276]  Kai Zhang,et al.  A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds. , 2014, Angewandte Chemie.

[277]  Aldo Steinfeld,et al.  Amine-based nanofibrillated cellulose as adsorbent for CO₂ capture from air. , 2011, Environmental science & technology.

[278]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[279]  Adam J. Stevenson,et al.  Strong, tough and stiff bioinspired ceramics from brittle constituents. , 2014, Nature materials.

[280]  Rui Huang,et al.  Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding , 2017 .

[281]  Liyi Shi,et al.  Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability , 2017 .

[282]  O. Rojas,et al.  Protein Adsorption Tailors the Surface Energies and Compatibility between Polylactide and Cellulose Nanofibrils. , 2017, Biomacromolecules.

[283]  K. Anseth,et al.  Hydrogel Cell Cultures , 2007, Science.

[284]  Kevin E. Shopsowitz,et al.  The development of chiral nematic mesoporous materials. , 2014, Accounts of chemical research.

[285]  Zhen-Yu Wu,et al.  Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials. , 2016, Accounts of chemical research.

[286]  J. Blaker,et al.  Hierarchical Composites Made Entirely from Renewable Resources , 2011 .

[287]  Jian Li,et al.  Ultralight and highly flexible aerogels with long cellulose I nanofibers , 2011 .

[288]  J. Sugiyama,et al.  The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[289]  M. Toivakka,et al.  Conductivity of PEDOT:PSS on Spin-Coated and Drop Cast Nanofibrillar Cellulose Thin Films , 2015, Nanoscale Research Letters.

[290]  M. Meyers,et al.  Structural Design Elements in Biological Materials: Application to Bioinspiration , 2015, Advanced materials.

[291]  F Barthelat,et al.  Overcoming the brittleness of glass through bio-inspiration and micro-architecture , 2014, Nature Communications.

[292]  K. Maniura‐Weber,et al.  A Protein‐Nanocellulose Paper for Sensing Copper Ions at the Nano‐ to Micromolar Level , 2017 .

[293]  E. Fortunati,et al.  Preparation of transparent and conductive cellulose nanocrystals/graphene nanoplatelets films , 2014, Journal of Materials Science.

[294]  O. Ikkala,et al.  Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. , 2011, Biomacromolecules.

[295]  A. Beran,et al.  Molluscan shell evolution with review of shell calcification hypothesis. , 2009, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[296]  S. Mazières,et al.  SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications , 2016 .

[297]  Y. Davoudpour,et al.  Production and modification of nanofibrillated cellulose using various mechanical processes: a review. , 2014, Carbohydrate polymers.

[298]  Martina Lille,et al.  The role of hemicellulose in nanofibrillated cellulose networks , 2013 .

[299]  Todd Hoare,et al.  Review of Hydrogels and Aerogels Containing Nanocellulose , 2017 .

[300]  Boxin Zhao,et al.  Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. , 2014, Biomacromolecules.

[301]  R. Serimaa,et al.  Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose , 2012, Cellulose.

[302]  P. Janmey,et al.  Tissue Cells Feel and Respond to the Stiffness of Their Substrate , 2005, Science.

[303]  Andreas Walther,et al.  Emulsion polymerization using Janus particles as stabilizers. , 2008, Angewandte Chemie.

[304]  Jian Li,et al.  Anticorrosive superhydrophobic polystyrene-coated mesh for continuous oil spill clean-up , 2017 .

[305]  Junji Nemoto,et al.  Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. , 2015, ACS applied materials & interfaces.

[306]  André R Studart,et al.  Additive manufacturing of biologically-inspired materials. , 2016, Chemical Society reviews.

[307]  J. Clark,et al.  Always look on the "light" side of life: sustainable carbon aerogels. , 2014, ChemSusChem.

[308]  L. Mattoso,et al.  Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline. , 2009, Journal of nanoscience and nanotechnology.

[309]  Andreas Greiner,et al.  Nanostructured Fibers via Electrospinning , 2001 .

[310]  A. Dufresne,et al.  Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. , 2013, Biomacromolecules.

[311]  T. Pääkkönen,et al.  Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel , 2016, Cellulose.

[312]  O. Ikkala,et al.  Toughness and Fracture Properties in Nacre‐Mimetic Clay/Polymer Nanocomposites , 2017 .

[313]  E. Lasseuguette,et al.  Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp , 2008 .

[314]  Shanyu Zhao,et al.  Multiscale Assembly of Superinsulating Silica Aerogels Within Silylated Nanocellulosic Scaffolds: Improved Mechanical Properties Promoted by Nanoscale Chemical Compatibilization , 2015 .

[315]  Martin A. Hubbe,et al.  Nanocellulose in packaging: Advances in barrier layer technologies , 2017 .

[316]  Qi Zhou,et al.  Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes , 2013 .

[317]  A. Tuteja,et al.  Design Parameters for Superhydrophobicity and Superoleophobicity , 2008 .

[318]  D. García-Olmo,et al.  Sutures enriched with adipose-derived stem cells decrease the local acute inflammation after tracheal anastomosis in a murine model. , 2012, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[319]  J. Juuti,et al.  Cellulose Nanofibril Film as a Piezoelectric Sensor Material. , 2016, ACS applied materials & interfaces.

[320]  T. Iwata,et al.  Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. , 2011, Biomacromolecules.

[321]  Gero Decher,et al.  Polyelectrolytes I: Polyanion/Polycation Multilayers at the Air/Monolayer/Water Interface as Elements for Quantitative Polymer Adsorption Studies and Preparation of Hetero-superlattices on Solid Surfaces† , 2000 .

[322]  A. Bismarck,et al.  Strong and Stiff: High-Performance Cellulose Nanocrystal/Poly(vinyl alcohol) Composite Fibers. , 2016, ACS applied materials & interfaces.

[323]  E. Kumacheva,et al.  Circular Dichroism of Chiral Nematic Films of Cellulose Nanocrystals Loaded with Plasmonic Nanoparticles. , 2015, ACS nano.

[324]  U. Edlund,et al.  Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils. , 2017, Biomacromolecules.

[325]  B. Tardy,et al.  Nanocellulose–surfactant interactions , 2017 .

[326]  M. MacLachlan,et al.  Iridescent Chiral Nematic Cellulose Nanocrystal/Polymer Composites Assembled in Organic Solvents. , 2013, ACS macro letters.

[327]  John Gregory,et al.  Organic polyelectrolytes in water treatment. , 2007, Water research.

[328]  C. Weder,et al.  Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub , 2009 .

[329]  T. Peijs,et al.  Cellulose Biocomposites—From Bulk Moldings to Nanostructured Systems , 2010 .

[330]  H. Orelma,et al.  Effect of Molecular Architecture of PDMAEMA-POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses and Evidence of Interfacial Water Expulsion. , 2015, The journal of physical chemistry. B.

[331]  H. Yano,et al.  Nanostructure and physical properties of cellulose nanofiber-carbon nanotube composite films. , 2017, Carbohydrate polymers.

[332]  L. Bergström,et al.  A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. , 2011, Nanoscale.

[333]  F. Schacher,et al.  Micellar interpolyelectrolyte complexes. , 2012, Chemical Society reviews.

[334]  Bai Yang,et al.  Colloidal cholesteric liquid crystal in spherical confinement , 2016, Nature Communications.

[335]  O. Akkus,et al.  Synthesis and Fabrication of Nanocomposite Fibers of Collagen-Cellulose Nanocrystals by Coelectrocompaction. , 2017, Biomacromolecules.

[336]  L. Altomare,et al.  Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: Synthesis, characterization, and photocatalytic properties , 2013 .

[337]  L. Scriven,et al.  The Marangoni Effects , 1960, Nature.

[338]  Juergen Biener,et al.  Advanced carbon aerogels for energy applications , 2011 .

[339]  J. Capadona,et al.  Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. , 2007, Biomacromolecules.

[340]  Zhiqiang Fang,et al.  Biodegradable transparent substrates for flexible organic-light-emitting diodes , 2013 .

[341]  Akira Isogai,et al.  Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. , 2014, Angewandte Chemie.

[342]  A. Steinfeld,et al.  Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams. , 2015, Environmental science & technology.

[343]  Sunkyu Park,et al.  Interfacial properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals. , 2012, ACS applied materials & interfaces.

[344]  Wenwen Huang,et al.  Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials. , 2017, Accounts of chemical research.

[345]  O. Rojas,et al.  Attachment of gold nanoparticles on cellulose nanofibrils via click reactions and electrostatic interactions , 2016, Cellulose.

[346]  Takashi Kato,et al.  An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation , 2009, Science.

[347]  L. Mahadevan,et al.  Hygromorphs: from pine cones to biomimetic bilayers , 2009, Journal of The Royal Society Interface.

[348]  R. Pelton,et al.  Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[349]  D. Petri,et al.  Interfacial properties of cellulose nanoparticles obtained from acid and enzymatic hydrolysis of cellulose , 2016, Cellulose.

[350]  A. Naderi,et al.  Carboxymethylated nanofibrillated cellulose: effect of monovalent electrolytes on the rheological properties , 2014, Cellulose.

[351]  M. Vallejos,et al.  All-Cellulose Composite Fibers Obtained by Electrospinning Dispersions of Cellulose Acetate and Cellulose Nanocrystals , 2012, Journal of Polymers and the Environment.

[352]  Kevin E. Shopsowitz,et al.  Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. , 2013, ACS applied materials & interfaces.

[353]  M. Linder,et al.  Immobilization-stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation. , 2012, Biomacromolecules.

[354]  C. Rodríguez-Abreu,et al.  Nanocellulose properties and applications in colloids and interfaces , 2014 .

[355]  Hanne M. van der Kooij,et al.  Controlled, Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors , 2014, Advanced optical materials.

[356]  M. MacLachlan,et al.  Imprinting of Photonic Patterns with Thermosetting Amino-Formaldehyde-Cellulose Composites. , 2013, ACS macro letters.

[357]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[358]  Andreas Walther,et al.  Genetic engineering of biomimetic nanocomposites: diblock proteins, graphene, and nanofibrillated cellulose. , 2011, Angewandte Chemie.

[359]  Yuesheng Huang,et al.  Application of stems cells in wound healing—An update , 2014, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[360]  Kang Li,et al.  Cellulose nanopapers as tight aqueous ultra-filtration membranes , 2015 .

[361]  E. Terentjev,et al.  Mechanics of biological networks: from the cell cytoskeleton to connective tissue. , 2014, Soft matter.

[362]  O. Rojas,et al.  PAPER CHEMISTRY: Approaching super-hydrophobicity from cellulosic materials: A Review , 2013 .

[363]  S. Zauscher,et al.  Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins , 2010 .

[364]  M. Willinger,et al.  Biogenic Crystallographically Continuous Aragonite Helices: The Microstructure of the Planktonic Gastropod Cuvierina , 2016 .

[365]  R. Rodríguez-Sanoja,et al.  Carbohydrate-binding domains: multiplicity of biological roles , 2010, Applied Microbiology and Biotechnology.

[366]  Y. Hsieh,et al.  Holocellulose nanocrystals: amphiphilicity, oil/water emulsion, and self-assembly. , 2015, Biomacromolecules.

[367]  V. Hytönen,et al.  Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding. , 2014, Nanoscale.

[368]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[369]  Xiaodong Cao,et al.  Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[370]  R. D. de Freitas,et al.  Bacterial cellulose in biomedical applications: A review. , 2017, International journal of biological macromolecules.

[371]  H. Bian,et al.  Direct functionalization of cellulose nanocrystals with polymer brushes via UV-induced polymerization: access to novel heterogeneous visible-light photocatalysts , 2016 .

[372]  M. Hubbe,et al.  Green Modification of Surface Characteristics of Cellulosic Materials at the Molecular or Nano Scale: A Review , 2015 .

[373]  Janne Laine,et al.  Modification of cellulose nanofibrils with luminescent carbon dots. , 2014, Biomacromolecules.

[374]  Fredrik Lundell,et al.  Ultrastrong and Bioactive Nanostructured Bio-Based Composites. , 2017, ACS nano.

[375]  Sami Nummelin,et al.  Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential "click" reaction and adsorption. , 2012, Biomacromolecules.

[376]  J. Seppälä,et al.  Tailor-made hemicellulose-based hydrogels reinforced with nanofibrillated cellulose , 2015 .

[377]  Jianbin Luo,et al.  Excellent lubricating behavior of Brasenia schreberi mucilage. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[378]  F. Vilaseca,et al.  Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole. , 2016, Carbohydrate polymers.

[379]  S. Sharma,et al.  Synthesis of Cyclodextrin-functionalized Cellulose Nanofibril Aerogel as a Highly Effective Adsorbent for Phenol Pollutant Removal , 2015 .

[380]  Fujian Xu,et al.  Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. , 2015, ACS applied materials & interfaces.

[381]  M. Meyers,et al.  The growth of nacre in the abalone shell. , 2008, Acta biomaterialia.

[382]  T. Peijs,et al.  Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper , 2017, Journal of Materials Science.

[383]  A. Müller,et al.  The impact of Janus nanoparticles on the compatibilization of immiscible polymer blends under technologically relevant conditions. , 2014, ACS nano.

[384]  C. Osuji,et al.  Rheology of cellulose nanofibrils in the presence of surfactants. , 2016, Soft matter.

[385]  W. Hamad Photonic and Semiconductor Materials Based on Cellulose Nanocrystals , 2015 .

[386]  P. Janmey,et al.  Nonlinear elasticity in biological gels , 2004, Nature.

[387]  M. Linder,et al.  Hydrophobins: Proteins that self assemble at interfaces , 2009 .

[388]  P. Laaksonen,et al.  Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides. , 2016, Biomacromolecules.

[389]  A. Rowan,et al.  Nonlinear mechanics of hybrid polymer networks that mimic the complex mechanical environment of cells , 2017, Nature Communications.

[390]  O. Rojas,et al.  Asymmetric cellulose nanocrystals: thiolation of reducing end groups via NHS–EDC coupling , 2014, Cellulose.

[391]  J. J. Valle-Delgado,et al.  Direct measurements of non-ionic attraction and nanoscaled lubrication in biomimetic composites from nanofibrillated cellulose and modified carboxymethylated cellulose. , 2013, Nanoscale.

[392]  E. Cranston,et al.  Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. , 2013, Biomacromolecules.

[393]  Latha A. Gearheart,et al.  Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. , 2004, Journal of the American Chemical Society.

[394]  L. Berglund,et al.  Fire-retardant and ductile clay nanopaper biocomposites based on montmorrilonite in matrix of cellulose nanofibers and carboxymethyl cellulose , 2013 .

[395]  O. Rojas,et al.  Thermomechanical properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals: a dynamic mechanical and nanoindentation study. , 2013, ACS applied materials & interfaces.

[396]  Wenqian Feng,et al.  Superhydrophobic and Slippery Lubricant-Infused Flexible Transparent Nanocellulose Films by Photoinduced Thiol-Ene Functionalization. , 2016, ACS applied materials & interfaces.

[397]  Hong Dong,et al.  Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. , 2013, Biomacromolecules.

[398]  K. Håkansson Online determination of anisotropy during cellulose nanofibril assembly in a flow focusing device , 2015 .

[399]  Yi Cui,et al.  Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries , 2015, Nature Communications.

[400]  Lakshminarayanan Mahadevan,et al.  How wet paper curls , 2011 .

[401]  J. Israelachvili,et al.  Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus. , 2004, Journal of biomedical materials research. Part A.

[402]  Alain Dufresne,et al.  Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. , 2012, Nanoscale.

[403]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[404]  M. Nogi,et al.  Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices. , 2015, ACS applied materials & interfaces.

[405]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[406]  Qiang Zhang,et al.  Facile Preparation of Biocompatible Silk Fibroin/Cellulose Nanocomposite Films with High Mechanical Performance , 2017 .

[407]  J. Seppälä,et al.  Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. , 2010, Biomacromolecules.

[408]  S. Kelley,et al.  Development of Langmuir-Schaeffer cellulose nanocrystal monolayers and their interfacial behaviors. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[409]  F. Bates,et al.  Interplay of Phase Separation and Thermoreversible Gelation in Aqueous Methylcellulose Solutions , 2013 .

[410]  H. Sixta,et al.  Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid. , 2016, ChemSusChem.

[411]  Y. Wan,et al.  Flexible and monolithic zinc oxide bionanocomposite foams by a bacterial cellulose mediated approach for antibacterial applications. , 2014, Dalton transactions.

[412]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[413]  Kang Li,et al.  Nanopapers for organic solvent nanofiltration. , 2014, Chemical communications.

[414]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[415]  Chao Gao,et al.  Multifunctional, Ultra‐Flyweight, Synergistically Assembled Carbon Aerogels , 2013, Advanced materials.

[416]  Xuezhu Xu,et al.  Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. , 2013, ACS applied materials & interfaces.

[417]  J. Seppälä,et al.  Elastic, crosslinked poly(acrylic acid) filaments: nanocellulose reinforcement and graphene lubrication , 2015 .

[418]  O. Rojas,et al.  Spinning of Cellulose Nanofibrils into Filaments: A Review , 2017 .

[419]  O. Ikkala,et al.  Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. , 2010, Nano letters.

[420]  Shanshan Gong,et al.  Graphene-based artificial nacre nanocomposites. , 2016, Chemical Society reviews.

[421]  V. Kuzmenko,et al.  Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds. , 2016, Materials science & engineering. C, Materials for biological applications.

[422]  Peter Nordlander,et al.  Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles , 2013, Proceedings of the National Academy of Sciences.

[423]  Olli Ikkala,et al.  Vapour-driven Marangoni propulsion: continuous, prolonged and tunable motion , 2012 .

[424]  L. Berglund,et al.  Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper. , 2015, Biomacromolecules.

[425]  A. Carlmark,et al.  Grafting of cellulose by ring-opening polymerisation – A review , 2012 .

[426]  O. Ikkala,et al.  Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces , 2012 .

[427]  Robin H. A. Ras,et al.  Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation. , 2017, Biomacromolecules.

[428]  Robin H. A. Ras,et al.  Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing , 2013, Advanced materials.

[429]  L. Daniel Söderberg,et al.  Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments , 2014, Nature Communications.

[430]  Olli Ikkala,et al.  Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities , 2008 .

[431]  Lei Liu,et al.  Synthetic nacre by predesigned matrix-directed mineralization , 2016, Science.

[432]  Xiaoya Liu,et al.  Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. , 2012, Carbohydrate polymers.

[433]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[434]  Tuula T. Teeri,et al.  The roles and function of cellulose-binding domains , 1997 .

[435]  D. Andrews,et al.  Tunable hydrogel thin films from reactive synthetic polymers as potential two-dimensional cell scaffolds. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[436]  M. MacLachlan,et al.  Functional materials from cellulose-derived liquid-crystal templates. , 2015, Angewandte Chemie.

[437]  Guang Yang,et al.  Thermoresponsive bacterial cellulose whisker/poly(NIPAM-co-BMA) nanogel complexes: synthesis, characterization, and biological evaluation. , 2013, Biomacromolecules.

[438]  Bradley A. Newcomb,et al.  Gel Spinning of Polyacrylonitrile/Cellulose Nanocrystal Composite Fibers. , 2015, ACS biomaterials science & engineering.

[439]  Anirudha V. Sumant,et al.  Graphene: a new emerging lubricant ☆ , 2014 .

[440]  Tuomo Suntola,et al.  Atomic Layer Epitaxy , 1985 .

[441]  S. Eichhorn Cellulose nanowhiskers: promising materials for advanced applications , 2011 .

[442]  A. Ragauskas,et al.  Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. , 2014, Carbohydrate polymers.

[443]  Janne Laine,et al.  Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales , 2015, Angewandte Chemie.

[444]  Tiina Nypelö,et al.  Tailoring surface properties of paper using nanosized precipitated calcium carbonate particles. , 2011, ACS applied materials & interfaces.

[445]  P. Dubois,et al.  Binary Mixed Homopolymer Brushes Tethered to Cellulose Nanocrystals: A Step Towards Compatibilized Polyester Blends. , 2016, Biomacromolecules.

[446]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[447]  R. Pelton,et al.  Stable Aqueous Foams from Cellulose Nanocrystals and Methyl Cellulose. , 2016, Biomacromolecules.

[448]  J. Seppälä,et al.  Processable polyaniline suspensions through in situ polymerization onto nanocellulose , 2013 .

[449]  T. Pradeep,et al.  Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water. , 2015, ACS applied materials & interfaces.

[450]  S. Ozcan,et al.  Tunable morphologies of indium tin oxide nanostructures using nanocellulose templates , 2015 .

[451]  Jianwei Song,et al.  Liquid crystal microphase separation of cellulose nanocrystals in wet-spun PVA composite fibers , 2014 .

[452]  B. P. Wilson,et al.  Noncovalent Surface Modification of Cellulose Nanopapers by Adsorption of Polymers from Aprotic Solvents. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[453]  C. Clemons Nanocellulose in Spun Continuous Fibers: A Review and Future Outlook , 2016 .

[454]  J. Deneubourg,et al.  Self-assemblages in insect societies , 2002, Insectes Sociaux.

[455]  Georg Schitter,et al.  Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. , 2006, Biophysical journal.

[456]  H. Brumer,et al.  Xyloglucan in cellulose modification , 2007 .

[457]  Yves Grohens,et al.  Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties , 2015 .

[458]  R. M. Parker,et al.  Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry , 2016, ACS nano.

[459]  Akira Isogai,et al.  TEMPO-oxidized cellulose nanofibers. , 2011, Nanoscale.

[460]  E. J. Foster,et al.  Bionanocomposites: differential effects of cellulose nanocrystals on protein diblock copolymers. , 2013, Biomacromolecules.

[461]  O. Ikkala,et al.  Thermoresponsive Nanocellulose Hydrogels with Tunable Mechanical Properties. , 2014, ACS macro letters.

[462]  Jonas Van Rie,et al.  Cellulose-gold nanoparticle hybrid materials. , 2017, Nanoscale.

[463]  O. Rojas,et al.  Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films , 2015 .

[464]  O. Rojas,et al.  Dielectrophoresis of cellulose nanocrystals and alignment in ultrathin films by electric field-assisted shear assembly. , 2011, Journal of colloid and interface science.

[465]  T. Pääkkönen,et al.  TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield , 2017, Cellulose.

[466]  J. Cartwright,et al.  The dynamics of nacre self-assembly , 2007, Journal of The Royal Society Interface.

[467]  Kristiina Oksman,et al.  Strong Aqueous Gels of Cellulose Nanofibers and Nanowhiskers Isolated from Softwood Flour , 2011 .