Coresets-Methods and History: A Theoreticians Design Pattern for Approximation and Streaming Algorithms
暂无分享,去创建一个
[1] Nir Ailon,et al. An almost optimal unrestricted fast Johnson-Lindenstrauss transform , 2010, SODA '11.
[2] David P. Woodruff,et al. Applications of the Shannon-Hartley theorem to data streams and sparse recovery , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[3] Piotr Indyk,et al. Approximate clustering via core-sets , 2002, STOC '02.
[4] David P. Woodruff,et al. Numerical linear algebra in the streaming model , 2009, STOC '09.
[5] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[6] Amit Kumar,et al. Linear-time approximation schemes for clustering problems in any dimensions , 2010, JACM.
[7] Vladimir Braverman,et al. New Frameworks for Offline and Streaming Coreset Constructions , 2016, ArXiv.
[8] Marcel R. Ackermann,et al. Clustering for metric and non-metric distance measures , 2008, SODA '08.
[9] David P. Woodruff,et al. Turnstile streaming algorithms might as well be linear sketches , 2014, STOC.
[10] Anirban Dasgupta,et al. A sparse Johnson: Lindenstrauss transform , 2010, STOC '10.
[11] Pankaj K. Agarwal,et al. Streaming Algorithms for Extent Problems in High Dimensions , 2010, SODA '10.
[12] Michael W. Mahoney,et al. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.
[13] David P. Woodruff,et al. Optimal Bounds for Johnson-Lindenstrauss Transforms and Streaming Problems with Subconstant Error , 2011, TALG.
[14] Christian Sohler,et al. Random projections for Bayesian regression , 2015, Statistics and Computing.
[15] David Maxwell Chickering,et al. Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..
[16] Alexander J. Smola,et al. Communication Efficient Coresets for Empirical Loss Minimization , 2015, UAI.
[17] Kasper Green Larsen,et al. Optimality of the Johnson-Lindenstrauss Lemma , 2016, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[18] David P. Woodruff,et al. Coresets and sketches for high dimensional subspace approximation problems , 2010, SODA '10.
[19] Eyal Kushilevitz,et al. Communication Complexity , 1997, Adv. Comput..
[20] Farid M. Ablayev,et al. Lower Bounds for One-Way Probabilistic Communication Complexity and Their Application to Space Complexity , 1996, Theor. Comput. Sci..
[21] Amos Fiat,et al. Coresets forWeighted Facilities and Their Applications , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[22] Santosh S. Vempala,et al. Principal Component Analysis and Higher Correlations for Distributed Data , 2013, COLT.
[23] Anirban Dasgupta,et al. Sampling algorithms and coresets for ℓp regression , 2007, SODA '08.
[24] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[25] Michael Langberg,et al. A unified framework for approximating and clustering data , 2011, STOC.
[26] Christian Sohler,et al. BICO: BIRCH Meets Coresets for k-Means Clustering , 2013, ESA.
[27] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[28] Dan Feldman,et al. A PTAS for k-means clustering based on weak coresets , 2007, SCG '07.
[29] Daniel M. Kane,et al. Sparser Johnson-Lindenstrauss Transforms , 2010, JACM.
[30] David P. Woodruff,et al. Fast approximation of matrix coherence and statistical leverage , 2011, ICML.
[31] Christian Sohler,et al. Asymptotically exact streaming algorithms , 2014, ArXiv.
[32] Haim Kaplan,et al. Private coresets , 2009, STOC '09.
[33] Christian Sohler,et al. Coresets in dynamic geometric data streams , 2005, STOC '05.
[34] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[35] Kasper Green Larsen,et al. The Johnson-Lindenstrauss lemma is optimal for linear dimensionality reduction , 2014, ICALP.
[36] L. Schulman,et al. Universal ε-approximators for integrals , 2010, SODA '10.
[37] David P. Woodruff,et al. Subspace Embeddings and \(\ell_p\)-Regression Using Exponential Random Variables , 2013, COLT.
[38] Christos Boutsidis,et al. Improved Matrix Algorithms via the Subsampled Randomized Hadamard Transform , 2012, SIAM J. Matrix Anal. Appl..
[39] Michael B. Cohen,et al. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.
[40] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[41] Kristian Kersting,et al. Core Dependency Networks , 2018, AAAI.
[42] Michael W. Mahoney,et al. Implementing Randomized Matrix Algorithms in Parallel and Distributed Environments , 2015, Proceedings of the IEEE.
[43] Kenneth L. Clarkson,et al. Optimal core-sets for balls , 2008, Comput. Geom..
[44] Nir Ailon,et al. Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes , 2008, SODA '08.
[45] Dan Feldman,et al. Smallest enclosing ball for probabilistic data , 2014, SoCG.
[46] Pankaj K. Agarwal,et al. A space-optimal data-stream algorithm for coresets in the plane , 2007, SCG '07.
[47] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2013, STOC '13.
[48] Huy L. Nguyen,et al. Lower Bounds for Oblivious Subspace Embeddings , 2013, ICALP.
[49] David Heckerman,et al. Dependency Networks for Density Estimation, Collaborative Filtering, and Data Visualization , 2000 .
[50] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices III: Computing a Compressed Approximate Matrix Decomposition , 2006, SIAM J. Comput..
[51] Andreas Krause,et al. Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures , 2015, AISTATS.
[52] Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions , 2006, Comput. Geom..
[53] Timothy M. Chan. Approximating the Diameter, Width, Smallest Enclosing Cylinder, and Minimum-Width Annulus , 2002, Int. J. Comput. Geom. Appl..
[54] Sariel Har-Peled,et al. Smaller Coresets for k-Median and k-Means Clustering , 2005, SCG.
[55] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[56] Moses Charikar,et al. Finding frequent items in data streams , 2004, Theor. Comput. Sci..
[57] Michael W. Mahoney,et al. Statistical and Algorithmic Perspectives on Randomized Sketching for Ordinary Least-Squares , 2015, ICML.
[58] Alexandr Andoni,et al. High frequency moments via max-stability , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[59] Kasturi R. Varadarajan,et al. Geometric Approximation via Coresets , 2007 .
[60] Pankaj K. Agarwal,et al. Approximating extent measures of points , 2004, JACM.
[61] Michael A. Saunders,et al. LSRN: A Parallel Iterative Solver for Strongly Over- or Underdetermined Systems , 2011, SIAM J. Sci. Comput..
[62] Andreas Krause,et al. Scalable Training of Mixture Models via Coresets , 2011, NIPS.
[63] Joel A. Tropp,et al. Improved Analysis of the subsampled Randomized Hadamard Transform , 2010, Adv. Data Sci. Adapt. Anal..
[64] Dan Roth,et al. Maximum Margin Coresets for Active and Noise Tolerant Learning , 2007, IJCAI.
[65] David P. Woodruff,et al. Subspace embeddings for the L1-norm with applications , 2011, STOC '11.
[66] David M. Mount,et al. A local search approximation algorithm for k-means clustering , 2002, SCG '02.
[67] David P. Woodruff,et al. The Fast Cauchy Transform and Faster Robust Linear Regression , 2012, SIAM journal on computing (Print).
[68] Ke Chen,et al. On Coresets for k-Median and k-Means Clustering in Metric and Euclidean Spaces and Their Applications , 2009, SIAM J. Comput..
[69] Kenneth L. Clarkson,et al. Smaller core-sets for balls , 2003, SODA '03.
[70] Fabian Hadiji,et al. Poisson Dependency Networks: Gradient Boosted Models for Multivariate Count Data , 2015, Machine Learning.
[71] K. Clarkson. Subgradient and sampling algorithms for l1 regression , 2005, SODA '05.
[72] Bernard Chazelle,et al. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.
[73] Bernard Chazelle,et al. The discrepancy method - randomness and complexity , 2000 .
[74] Huy L. Nguyen,et al. OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[75] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..
[76] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[77] S. Muthukrishnan,et al. Sampling algorithms for l2 regression and applications , 2006, SODA '06.
[78] Hamid Zarrabi-Zadeh. An Almost Space-Optimal Streaming Algorithm for Coresets in Fixed Dimensions , 2008, ESA.
[79] Daniel M. Kane,et al. Almost Optimal Explicit Johnson-Lindenstrauss Families , 2011, APPROX-RANDOM.
[80] Huy L. Nguyen,et al. Sparsity lower bounds for dimensionality reducing maps , 2012, STOC '13.
[81] Kenneth L. Clarkson,et al. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.
[82] Timothy M. Chan,et al. Better ϵ-Dependencies for Offline Approximate Nearest Neighbor Search, Euclidean Minimum Spanning Trees, and ϵ-Kernels , 2014, Symposium on Computational Geometry.
[83] Hamid Zarrabi-Zadeh,et al. Core-Preserving Algorithms , 2008, CCCG.
[84] Jon Louis Bentley,et al. Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.
[85] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[86] Noga Alon,et al. Problems and results in extremal combinatorics--I , 2003, Discret. Math..
[87] Maria-Florina Balcan,et al. Distributed k-means and k-median clustering on general communication topologies , 2013, NIPS.
[88] Sariel Har-Peled. A Simple Algorithm for Maximum Margin Classification, Revisited , 2015, ArXiv.
[89] Naum Zuselevich Shor,et al. Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.
[90] Jeff M. Phillips,et al. Coresets and Sketches , 2016, ArXiv.
[91] Ping Ma,et al. A statistical perspective on algorithmic leveraging , 2013, J. Mach. Learn. Res..
[92] A. R. Davidson. Theory of Probabilities. , 1953 .
[93] Mikkel Thorup. Quick k-Median, k-Center, and Facility Location for Sparse Graphs , 2001, ICALP.
[94] H. En. Lower Bounds for Oblivious Subspace Embeddings , 2013 .
[95] S. Muthukrishnan,et al. Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..