Light trapping in a polymer solar cell by tailored quantum dot emission.

We propose a polymer photovoltaic device with a new scattering mechanism based on photon absorption and re-emission in a quantum dot layer. A matrix of aluminum nanorods with optimized radius and period are used to modify the coupling of light emitted from the quantum dots into the polymer layer. Our analysis shows that this architecture is capable of increasing the absorption of an ordinary polymer photovoltaic device by 28%.

[1]  Gang Li,et al.  10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub‐Cells , 2013, Advanced materials.

[2]  A Comparative Study of Spectral Characteristics of CdSe and CdSe/ZnS Quantum Dots , 2006, 2006 International Symposium on Biophotonics, Nanophotonics and Metamaterials.

[3]  Meng-Tsan Tsai,et al.  Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. , 2013, Optics express.

[4]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[5]  Weiwei Li,et al.  Efficient tandem and triple-junction polymer solar cells. , 2013, Journal of the American Chemical Society.

[6]  Jan Fyenbo,et al.  Grid-connected polymer solar panels: initial considerations of cost, lifetime, and practicality. , 2010, Optics express.

[7]  L. Song,et al.  Design of high efficiency organic solar cell with light trapping. , 2012, Optics express.

[8]  Ole Hagemann,et al.  All solution processed tandem polymer solar cells based on thermocleavable materials , 2008 .

[9]  K. Ho,et al.  Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes. , 2012, Optics express.

[10]  Wei Ding,et al.  Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. , 2013, Optics express.

[11]  Emmanuel Kymakis,et al.  Nanoparticle-based plasmonic organic photovoltaic devices , 2013 .

[12]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[13]  Gang Li,et al.  Recent trends in polymer tandem solar cells research , 2013 .

[14]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[15]  Andrea Alù,et al.  Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells. , 2012, Optics express.

[16]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[17]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[18]  Doo Seok Jeong,et al.  Plasmonic nanograting design for inverted polymer solar cells. , 2012, Optics express.

[19]  A. Nozik Quantum dot solar cells , 2002 .

[20]  K. Catchpole,et al.  Nanophotonic light trapping in solar cells , 2012 .

[21]  Qiaoqiang Gan,et al.  Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier , 2013, Advanced materials.

[22]  Weng Cho Chew,et al.  Optical and electrical study of organic solar cells with a 2D grating anode. , 2012, Optics express.

[23]  Christoph J. Brabec,et al.  Organic photovoltaics: technology and market , 2004 .

[24]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[25]  A. Heeger,et al.  High‐Efficiency Polymer Solar Cells Enhanced by Solvent Treatment , 2013, Advanced materials.

[26]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[27]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[28]  D. O’Carroll,et al.  Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas , 2012 .

[29]  Peter Bienstman,et al.  Plasmonic absorption enhancement in organic solar cells with thin active layers , 2009 .

[30]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.