Bacterial cell shape

[1]  P. Graumann,et al.  Cytoskeletal elements in bacteria. , 2007, Annual review of microbiology.

[2]  H. Erickson,et al.  Rapid in Vitro Assembly Dynamics and Subunit Turnover of FtsZ Demonstrated by Fluorescence Resonance Energy Transfer* , 2005, Journal of Biological Chemistry.

[3]  Zemer Gitai,et al.  MreB Actin-Mediated Segregation of a Specific Region of a Bacterial Chromosome , 2005, Cell.

[4]  J. Löwe,et al.  Increasing complexity of the bacterial cytoskeleton. , 2005, Current opinion in cell biology.

[5]  D. Wirtz,et al.  The Assembly of MreB, a Prokaryotic Homolog of Actin* , 2005, Journal of Biological Chemistry.

[6]  Achilleas S. Frangakis,et al.  Cryo-Electron Tomography Reveals the Cytoskeletal Structure of Spiroplasma melliferum , 2005, Science.

[7]  Thomas Kruse,et al.  The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane‐bound complex , 2004, Molecular microbiology.

[8]  P. Graumann,et al.  Bacillus subtilis actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D and other actin-like proteins for proper localization , 2005, BMC Cell Biology.

[9]  K. Young,et al.  Endopeptidase Penicillin-Binding Proteins 4 and 7 Play Auxiliary Roles in Determining Uniform Morphology of Escherichia coli , 2004, Journal of bacteriology.

[10]  E. Brown,et al.  Teichoic Acid Is an Essential Polymer in Bacillus subtilis That Is Functionally Distinct from Teichuronic Acid , 2004, Journal of bacteriology.

[11]  S. Ehlers,et al.  Tertiary Structure of Staphylococcus aureus Cell Wall Murein , 2004, Journal of bacteriology.

[12]  K. Young,et al.  FtsZ Collaborates with Penicillin Binding Proteins To Generate Bacterial Cell Shape in Escherichia coli , 2004, Journal of bacteriology.

[13]  W. Vollmer,et al.  The Architecture of the Murein (Peptidoglycan) in Gram-Negative Bacteria: Vertical Scaffold or Horizontal Layer(s)? , 2004, Journal of bacteriology.

[14]  Frederico J. Gueiros-Filho,et al.  Assembly Dynamics of FtsZ Rings in Bacillus subtilis and Escherichia coli and Effects of FtsZ-Regulating Proteins , 2004, Journal of bacteriology.

[15]  P. Graumann,et al.  Dynamic movement of actin‐like proteins within bacterial cells , 2004, EMBO reports.

[16]  W. Margolin,et al.  FtsZ Exhibits Rapid Movement and Oscillation Waves in Helix-like Patterns in Escherichia coli , 2004, Current Biology.

[17]  Grant Henderson,et al.  Nanosurgery: observation of peptidoglycan strands in Lactobacillus helveticus cell walls. , 2004, Ultramicroscopy.

[18]  L. Amos,et al.  Molecules of the bacterial cytoskeleton. , 2004, Annual review of biophysics and biomolecular structure.

[19]  J. Gober,et al.  MreB, the cell shape‐determining bacterial actin homologue, co‐ordinates cell wall morphogenesis in Caulobacter crescentus , 2004, Molecular microbiology.

[20]  J. Errington,et al.  Several distinct localization patterns for penicillin‐binding proteins in Bacillus subtilis , 2003, Molecular microbiology.

[21]  C. Jacobs-Wagner,et al.  The Bacterial Cytoskeleton An Intermediate Filament-Like Function in Cell Shape , 2003, Cell.

[22]  J. Errington,et al.  Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery , 2003, Molecular microbiology.

[23]  T. Vernet,et al.  Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin‐binding proteins during the cell cycle , 2003, Molecular microbiology.

[24]  P. Graumann,et al.  Actin-like Proteins MreB and Mbl from Bacillus subtilis Are Required for Bipolar Positioning of Replication Origins , 2003, Current Biology.

[25]  T. Kruse,et al.  Dysfunctional MreB inhibits chromosome segregation in Escherichia coli , 2003, The EMBO journal.

[26]  K. Young Bacterial shape , 2003, Molecular microbiology.

[27]  K. Young,et al.  Bacterial shape , 2003 .

[28]  G. Stewart,et al.  Essential Nature of the mreC Determinant of Bacillus subtilis , 2003, Journal of bacteriology.

[29]  M. de Pedro,et al.  Patchiness of murein insertion into the sidewall of Escherichia coli. , 2003, Microbiology.

[30]  J. Errington,et al.  Control of Cell Morphogenesis in Bacteria Two Distinct Ways to Make a Rod-Shaped Cell , 2003, Cell.

[31]  S. Ehlers,et al.  Tertiary Structure of Bacterial Murein: the Scaffold Model , 2003, Journal of bacteriology.

[32]  Yu-Ling Shih,et al.  Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Errington,et al.  Cytokinesis in Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[34]  D. Popham,et al.  Peptidoglycan Synthesis in the Absence of Class A Penicillin-Binding Proteins in Bacillus subtilis , 2003, Journal of bacteriology.

[35]  M. de Pedro,et al.  Branching of Escherichia coli Cells Arises from Multiple Sites of Inert Peptidoglycan , 2003, Journal of bacteriology.

[36]  Jeff Errington,et al.  The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. , 2003, Developmental cell.

[37]  R. Herrmann,et al.  Cytoskeletal elements in the bacterium Mycoplasma pneumoniae , 2002, Naturwissenschaften.

[38]  P. Datta,et al.  Interaction between FtsZ and FtsW of Mycobacterium tuberculosis * , 2002, The Journal of Biological Chemistry.

[39]  D. S. Weiss,et al.  The Escherichia coli Cell Division Protein FtsW Is Required To Recruit Its Cognate Transpeptidase, FtsI (PBP3), to the Division Site , 2002, Journal of bacteriology.

[40]  Jan Löwe,et al.  Prokaryotic origin of the actin cytoskeleton , 2001, Nature.

[41]  S. Trachtenberg,et al.  A bacterial linear motor: cellular and molecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3 , 2001, Molecular microbiology.

[42]  K. Young,et al.  Contributions of PBP 5 anddd-Carboxypeptidase Penicillin Binding Proteins to Maintenance of Cell Shape in Escherichia coli , 2001, Journal of bacteriology.

[43]  J. Errington,et al.  Control of Cell Shape in Bacteria Helical, Actin-like Filaments in Bacillus subtilis , 2001, Cell.

[44]  A. Boulbitch,et al.  Elasticity of the rod-shaped gram-negative eubacteria. , 2000, Physical review letters.

[45]  J. Bono,et al.  Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Shapiro,et al.  Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. , 2000, Science.

[47]  K. Young,et al.  Penicillin Binding Protein 5 Affects Cell Diameter, Contour, and Morphology of Escherichia coli , 2000, Journal of bacteriology.

[48]  D. Pink,et al.  Thickness and Elasticity of Gram-Negative Murein Sacculi Measured by Atomic Force Microscopy , 1999, Journal of bacteriology.

[49]  J. Höltje,et al.  Cloning and Characterization of PBP 1C, a Third Member of the Multimodular Class A Penicillin-binding Proteins of Escherichia coli * , 1999, The Journal of Biological Chemistry.

[50]  R. A. Day,et al.  Identification of two penicillin-binding multienzyme complexes in Haemophilus influenzae. , 1999, Biochemical and biophysical research communications.

[51]  P. D. Rick,et al.  Identification and Characterization of a New Lipoprotein, NlpI, in Escherichia coli K-12 , 1999, Journal of bacteriology.

[52]  M. de Pedro,et al.  The Morphological Transition of Helicobacter pyloriCells from Spiral to Coccoid Is Preceded by a Substantial Modification of the Cell Wall , 1999, Journal of bacteriology.

[53]  W. Vollmer,et al.  Demonstration of Molecular Interactions between the Murein Polymerase PBP1B, the Lytic Transglycosylase MltA, and the Scaffolding Protein MipA of Escherichia coli * , 1999, The Journal of Biological Chemistry.

[54]  J. Höltje,et al.  Cloning and Characterization of PBP 1 C , a Third Member of the Multimodular Class A Penicillin-binding Proteins of Escherichia coli * , 1999 .

[55]  S. Trachtenberg Mollicutes-wall-less bacteria with internal cytoskeletons. , 1998, Journal of structural biology.

[56]  Y. Brun,et al.  Morphological adaptation and inhibition of cell division during stationary phase in Caulobacter crescentus , 1998, Molecular microbiology.

[57]  Kenneth H. Downing,et al.  Correction: Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[58]  P. Glaser,et al.  Control of cell shape and elongation by the rodA gene in Bacillus subtilis , 1998, Molecular Microbiology.

[59]  L. Amos,et al.  Crystal structure of the bacterial cell-division protein FtsZ , 1998, Nature.

[60]  Kenneth H. Downing,et al.  Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[61]  J. Frère,et al.  The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate , 1997, Journal of bacteriology.

[62]  H. Hara,et al.  A promoter for the first nine genes of the Escherichia coli mra cluster of cell division and cell envelope biosynthesis genes, including ftsI and ftsW , 1997, Journal of bacteriology.

[63]  R. Losick,et al.  Localization of the Escherichia coli cell division protein FtsI (PBP3) to the division site and cell pole , 1997, Molecular microbiology.

[64]  J. Lutkenhaus,et al.  ftsW is an essential cell‐division gene in Escherichia coli , 1997, Molecular microbiology.

[65]  M. de Pedro,et al.  Murein segregation in Escherichia coli , 1997, Journal of bacteriology.

[66]  J. Ayala,et al.  dacD, an Escherichia coli gene encoding a novel penicillin-binding protein (PBP6b) with DD-carboxypeptidase activity , 1996, Journal of bacteriology.

[67]  J. Lutkenhaus,et al.  FtsZ‐spirals and ‐arcs determine the shape of the invaginating septa in some mutants of Escherichia coli , 1996, Molecular microbiology.

[68]  X. Wang,et al.  Characterization of the ftsZ gene from Mycoplasma pulmonis, an organism lacking a cell wall , 1996, Journal of bacteriology.

[69]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[70]  G. Stewart,et al.  Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene , 1995, Journal of bacteriology.

[71]  T. Romeis,et al.  Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. , 1994, European journal of biochemistry.

[72]  T. Romeis,et al.  Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. , 1994, The Journal of biological chemistry.

[73]  C. Thompson,et al.  GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. Lutkenhaus,et al.  Guanine nucleotide-dependent assembly of FtsZ into filaments , 1994, Journal of bacteriology.

[75]  R. Marquis,et al.  Elastic, flexible peptidoglycan and bacterial cell wall properties. , 1994, Trends in microbiology.

[76]  J. Lutkenhaus,et al.  Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. Höltje “Three for one” — a Simple Growth Mechanism that Guarantees a Precise Copy of the Thin, Rod-Shaped Murein Sacculus of Escherichia coli , 1993 .

[78]  W. Löffelhardt,et al.  Bacterial Growth and Lysis , 1993, Federation of European Microbiological Societies Symposium Series.

[79]  G. Stewart,et al.  The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (minCD) and cell shape (mreBCD) determinants , 1992, Journal of bacteriology.

[80]  R. Losick,et al.  Identification of Bacillus subtilis genes for septum placement and shape determination , 1992, Journal of bacteriology.

[81]  L. Rothfield,et al.  The essential bacterial cell-division protein FtsZ is a GTPase , 1992, Nature.

[82]  D. Raychaudhuri,et al.  Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein , 1992, Nature.

[83]  P Bork,et al.  An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[84]  E. Bi,et al.  Isolation and characterization of ftsZ alleles that affect septal morphology , 1992, Journal of bacteriology.

[85]  A. L. Koch,et al.  Elasticity of the sacculus of Escherichia coli , 1992, Journal of bacteriology.

[86]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[87]  G. Stewart,et al.  Role and expression of the Bacillus subtilis rodC operon , 1991, Journal of bacteriology.

[88]  J. Bové,et al.  Nucleotide sequence of the Spiroplasma citri fibril protein gene , 1991, Journal of bacteriology.

[89]  W. Keck,et al.  Penicillin‐binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition , 1991, Molecular microbiology.

[90]  H. Labischinski,et al.  Direct proof of a "more-than-single-layered" peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study , 1991, Journal of bacteriology.

[91]  M. Ikeda,et al.  Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively , 1989, Journal of bacteriology.

[92]  H. Matsuzawa,et al.  Nucleotide sequence of the rodA gene, responsible for the rod shape of Escherichia coli: rodA and the pbpA gene, encoding penicillin-binding protein 2, constitute the rodA operon , 1989, Journal of bacteriology.

[93]  Y. Sakagami,et al.  Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells , 1988, Journal of bacteriology.

[94]  B. Spratt,et al.  Nucleotide sequences of the penicillin-binding protein 5 and 6 genes of Escherichia coli. , 1988, Nucleic acids research.

[95]  S. Tamaki,et al.  Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli , 1987, Journal of bacteriology.

[96]  B. Spratt,et al.  Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and rodA protein. , 1986, The Journal of biological chemistry.

[97]  A. L. Koch,et al.  Inside-to-outside growth and turnover of the wall of gram-positive rods. , 1985, Journal of theoretical biology.

[98]  D. Karamata,et al.  Cell wall and DNA cosegregation in Bacillus subtilis studied by electron microscope autoradiography , 1985, Journal of bacteriology.

[99]  L. Burman,et al.  Elongation of the murein sacculus of Escherichia coli. , 1985, Annales de l'Institut Pasteur. Microbiologie.

[100]  S. Tamaki,et al.  Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. , 1984, The Journal of biological chemistry.

[101]  A. L. Koch,et al.  Insertion and fate of the cell wall in Bacillus subtilis , 1984, Journal of bacteriology.

[102]  K. Amako,et al.  Growth of the Surface of Corynebacterium diphtheriae , 1983, Microbiology and immunology.

[103]  D. Karamata,et al.  Identification of cell wall subunits in bacillus subtilis and analysis of their segregation during growth , 1982, Journal of bacteriology.

[104]  M. Kessel,et al.  Cytoplasmic helical structure associated with Acholeplasma laidlawii , 1981, Journal of bacteriology.

[105]  F. Ishino,et al.  Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. , 1980, Biochemical and biophysical research communications.

[106]  H. Matsuzawa,et al.  Cluster of mrdA and mrdB genes responsible for the rod shape and mecillinam sensitivity of Escherichia coli , 1980, Journal of bacteriology.

[107]  G. Barnickel,et al.  On the secondary and tertiary structure of murein. Low and medium-angle X-ray evidence against chitin-based conformations of bacterial peptidoglycan. , 1979, European journal of biochemistry.

[108]  U. Henning,et al.  Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins , 1978, Journal of bacteriology.

[109]  J. Strominger,et al.  Mapping of the mecillinam-resistant, round morphological mutants of Escherichia coli , 1978, Journal of bacteriology.

[110]  B. Spratt Temperature-Sensitive Cell Division Mutants of Escherichia coli with Thermolabile Penicillin-Binding Proteins , 1977, Journal of bacteriology.

[111]  V. Braun,et al.  Covalent lipoprotein from the outer membrane of Escherichia coli. , 1975, Biochimica et biophysica acta.

[112]  B. Spratt Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[113]  B. Spratt,et al.  Penicillin-binding proteins and cell shape in E. coli , 1975, Nature.

[114]  K. Imahori,et al.  Characterization and Genetic Analysis of a Mutant of Escherichia coli K-12 with Rounded Morphology , 1973, Journal of bacteriology.

[115]  D. Karamata,et al.  Mapping of rod Mutants of Bacillus subtilis , 1972, Journal of bacteriology.

[116]  U. Schwarz,et al.  Morphogenetic Aspects of Murein Structure and Biosynthesis , 1971, Journal of bacteriology.

[117]  A. Tomasz,et al.  RADIOAUTOGRAPHIC EVIDENCE FOR EQUATORIAL WALL GROWTH IN A GRAM-POSITIVE BACTERIUM , 1970, The Journal of cell biology.

[118]  I. Burdett,et al.  The isolation and characterization of mutants of Bacillus subtilis and Bacillus licheniformis with disturbed morphology and cell division. , 1970, Journal of general microbiology.

[119]  V. Braun,et al.  Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. , 1969, European journal of biochemistry.

[120]  R. E. Marquis Salt-induced Contraction of Bacterial Cell Walls , 1968, Journal of bacteriology.

[121]  W. Weidel,et al.  BAGSHAPED MACROMOLECULES--A NEW OUTLOOK ON BACTERIAL CELL WALLS. , 1964, Advances in enzymology and related subjects of biochemistry.

[122]  R. Cole,et al.  Cell Wall Replication in Streptococcus pyogenes , 1962, Science.

[123]  H. H. Martin,et al.  The rigid layer of the cell wall of Escherichia coli strain B. , 1960, Journal of general microbiology.

[124]  J. Lederberg BACTERIAL PROTOPLASTS INDUCED BY PENICILLIN. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[125]  C. Weibull THE ISOLATION OF PROTOPLASTS FROM BACILLUS MEGATERIUM BY CONTROLLED TREATMENT WITH LYSOZYME , 1953, Journal of bacteriology.