Information-based numerical practice

Abstract The paper is a survey of some aspects of information-based selection of numerical methods. Some theoretical ideas on how to deal with uncertain information are discussed and the example of a universal quadrature formula is introduced. Certain aspects of the selection of the finite element method and adaptive mesh construction are discussed. Numerical examples illustrate the theoretical aspects.

[1]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[2]  Ernst Rank,et al.  An expert-system-like feedback approach in the hp -version of the finite element method , 1987 .

[3]  B. Guo,et al.  The hp version of the finite element method Part 1 : The basic approximation results , 2022 .

[4]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[5]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[6]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data, II: the trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions , 1989 .

[7]  I. Babuska,et al.  The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .

[8]  I. Babuška,et al.  The h-p version of the finite element method , 1986 .

[9]  Henryk Wozniakowski,et al.  A general theory of optimal algorithms , 1980, ACM monograph series.

[10]  John Robinson,et al.  An evaluation of plate bending elements : MSC/NASTRAN, ASAS, PAFEC, ANSYS and SAP4 , 1981 .

[11]  I. Babuska,et al.  Numerical processes in differential equations , 1968 .

[12]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[13]  Werner C Rheinboldt,et al.  Feedback Systems and Adaptivity for Numerical Computations. , 1983 .

[14]  Ahmed K. Noor,et al.  Geometrically nonlinear analysis of layerwise anisotropic shell structures by hybrid strain based lower order elements , 1987 .

[15]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[16]  I Babuska,et al.  Feedback, Adaptivity and A-Posterior Estimates in Finite Elements: Aims, Theory and Experience. , 1984 .

[17]  J. Chandra,et al.  Adaptive Computational Methods for Partial Differential Equations , 1984 .

[18]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[19]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[20]  Henryk Wozniakowski,et al.  A survey of information-based complexity , 1985, J. Complex..

[21]  I Babuska,et al.  The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .

[22]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[23]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[24]  Ivo Babuška,et al.  Basic principles of feedback and adaptive approaches in the finite element method , 1986 .