Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection

In this paper, we propose a class of exponential time differencing (ETD) schemes for solving the epitaxial growth model without slope selection. A linear convex splitting is first applied to the energy functional of the model, and then Fourier collocation and ETD-based multistep approximations are used respectively for spatial discretization and time integration of the corresponding gradient flow equation. Energy stabilities and error estimates of the first and second order ETD schemes are rigorously established in the fully discrete sense. We also numerically demonstrate the accuracy of the proposed schemes and simulate the coarsening dynamics with small diffusion coefficients. The results show the logarithm law for the energy decay and the power laws for growth of the surface roughness and the mound width, which are consistent with the existing theories in the literature.

[1]  Tao Tang,et al.  An Adaptive Time-Stepping Strategy for the Molecular Beam Epitaxy Models , 2011, SIAM J. Sci. Comput..

[2]  Weidong Zhao,et al.  Fast High-Order Compact Exponential Time Differencing Runge–Kutta Methods for Second-Order Semilinear Parabolic Equations , 2016, J. Sci. Comput..

[3]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[4]  Cheng Wang,et al.  A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2012, J. Sci. Comput..

[5]  Zhonghua Qiao,et al.  Characterizing the Stabilization Size for Semi-Implicit Fourier-Spectral Method to Phase Field Equations , 2014, SIAM J. Numer. Anal..

[6]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[7]  Bo Li,et al.  Center for Scientific Computation And Mathematical Modeling , 2003 .

[8]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[9]  Leonardo Golubović,et al.  Interfacial Coarsening in Epitaxial Growth Models without Slope Selection , 1997 .

[10]  Qiang Du,et al.  Analysis and Applications of the Exponential Time Differencing Schemes and Their Contour Integration Modifications , 2005 .

[11]  N. Higham Functions Of Matrices , 2008 .

[12]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[13]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[14]  Qiang Du,et al.  STABILITY ANALYSIS AND APPLICATION OF THE EXPONENTIAL TIME DIFFERENCING SCHEMES , 2022 .

[15]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[16]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[17]  Tao Tang,et al.  Error Analysis of a Mixed Finite Element Method for the Molecular Beam Epitaxy Model , 2015, SIAM J. Numer. Anal..

[18]  S. McKee,et al.  Weakly Singular Discrete Gronwall Inequalities , 1986 .

[19]  Tao Tang,et al.  Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..

[20]  Ming Wang,et al.  A nonconforming finite element method for the Cahn-Hilliard equation , 2010, J. Comput. Phys..

[21]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[22]  Jian Zhang,et al.  Fast and accurate algorithms for simulating coarsening dynamics of Cahn–Hilliard equations , 2015 .

[23]  Peter W Voorhees,et al.  Growth and Coarsening , 2002 .

[24]  Cheng Wang,et al.  A Linear Iteration Algorithm for a Second-Order Energy Stable Scheme for a Thin Film Model Without Slope Selection , 2014, J. Sci. Comput..

[25]  Zhonghua Qiao,et al.  An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation , 2015 .

[26]  Zhi-Zhong Sun,et al.  Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection , 2014, Math. Comput..

[27]  Qiang Du,et al.  STABILITY ANALYSIS AND APPLICATION OF THE EXPONENTIAL TIME DIFFERENCING SCHEMES 1) , 2004 .

[28]  Steven M. Wise,et al.  Unconditionally stable schemes for equations of thin film epitaxy , 2010 .

[29]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[30]  Shuyu Sun,et al.  Two-Phase Fluid Simulation Using a Diffuse Interface Model with Peng-Robinson Equation of State , 2014, SIAM J. Sci. Comput..

[31]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[32]  Bo Li,et al.  Epitaxial Growth Without Slope Selection: Energetics, Coarsening, and Dynamic Scaling , 2004, J. Nonlinear Sci..

[33]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[34]  Jian Zhang,et al.  Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations , 2015, J. Sci. Comput..

[35]  J. M. Keiser,et al.  A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .

[36]  L. Trefethen Spectral Methods in MATLAB , 2000 .