Programming language techniques for differential privacy

Differential privacy is rigorous framework for stating and enforcing privacy guarantees on computations over sensitive data. Informally, differential privacy ensures that the presence or absence of a single individual in a database has only a negligible statistical effect on the computation's result. Many specific algorithms have been proved differentially private, but manually checking that a given program is differentially private can be subtle, tedious, or both. This approach becomes unfeasible when larger programs are considered.

[1]  Catuscia Palamidessi,et al.  Generalized Bisimulation Metrics , 2014, CONCUR.

[2]  Aniket Kate,et al.  Differentially private data aggregation with optimal utility , 2014, ACSAC '14.

[3]  Marco Gaboardi,et al.  Dual Query: Practical Private Query Release for High Dimensional Data , 2014, ICML.

[4]  Andreas Haeberlen,et al.  Sensitivity analysis using type-based constraints , 2013, FPCDSL '13.

[5]  David Sands,et al.  Differential Privacy , 2015, POPL.

[6]  Gilles Barthe,et al.  Higher-Order Approximate Relational Refinement Types for Mechanism Design and Differential Privacy , 2014, POPL.

[7]  Vitaly Shmatikov,et al.  Robust De-anonymization of Large Sparse Datasets , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[8]  Margaret Martonosi,et al.  DP-WHERE: Differentially private modeling of human mobility , 2013, 2013 IEEE International Conference on Big Data.

[9]  Gilles Barthe,et al.  Proving Differential Privacy in Hoare Logic , 2014, 2014 IEEE 27th Computer Security Foundations Symposium.

[10]  Ratul Mahajan,et al.  Differentially-private network trace analysis , 2010, SIGCOMM 2010.

[11]  Aaron Roth,et al.  The Algorithmic Foundations of Differential Privacy , 2014, Found. Trends Theor. Comput. Sci..

[12]  George Danezis,et al.  Verified Computational Differential Privacy with Applications to Smart Metering , 2013, 2013 IEEE 26th Computer Security Foundations Symposium.

[13]  Lili Xu,et al.  Modular Reasoning about Differential Privacy in a Probabilistic Process Calculus , 2012, TGC.

[14]  Elaine Shi,et al.  Private and Continual Release of Statistics , 2010, ICALP.

[15]  Omer Reingold,et al.  Computational Differential Privacy , 2009, CRYPTO.

[16]  Andreas Haeberlen,et al.  Linear dependent types for differential privacy , 2013, POPL.

[17]  Dilsun Kirli Kaynar,et al.  Formal Verification of Differential Privacy for Interactive Systems , 2011, ArXiv.

[18]  Matteo Maffei,et al.  Differential Privacy by Typing in Security Protocols , 2013, 2013 IEEE 26th Computer Security Foundations Symposium.

[19]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[20]  Kunal Talwar,et al.  Mechanism Design via Differential Privacy , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[21]  Sharon Goldberg,et al.  Calibrating Data to Sensitivity in Private Data Analysis , 2012, Proc. VLDB Endow..

[22]  Benjamin Grégoire,et al.  Relational Reasoning via Probabilistic Coupling , 2015, LPAR.

[23]  Vitaly Shmatikov,et al.  Airavat: Security and Privacy for MapReduce , 2010, NSDI.

[24]  Guy N. Rothblum,et al.  Boosting and Differential Privacy , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[25]  Úlfar Erlingsson,et al.  RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response , 2014, CCS.

[26]  Andreas Haeberlen,et al.  Differential Privacy Under Fire , 2011, USENIX Security Symposium.

[27]  Andreas Haeberlen,et al.  Verifiable differential privacy , 2015, EuroSys.

[28]  S L Warner,et al.  Randomized response: a survey technique for eliminating evasive answer bias. , 1965, Journal of the American Statistical Association.

[29]  Nick Benton,et al.  Simple relational correctness proofs for static analyses and program transformations , 2004, POPL.

[30]  Sofya Raskhodnikova,et al.  Smooth sensitivity and sampling in private data analysis , 2007, STOC '07.

[31]  Arthur Azevedo de Amorim,et al.  Really Natural Linear Indexed Type Checking , 2014, IFL.

[32]  Catuscia Palamidessi,et al.  A Predictive Differentially-Private Mechanism for Mobility Traces , 2013, Privacy Enhancing Technologies.

[33]  Gilles Barthe,et al.  Probabilistic Relational Reasoning for Differential Privacy , 2012, TOPL.

[34]  Benjamin C. Pierce,et al.  Distance makes the types grow stronger: a calculus for differential privacy , 2010, ICFP '10.

[35]  Elaine Shi,et al.  GUPT: privacy preserving data analysis made easy , 2012, SIGMOD Conference.