Understanding aging in chalcogenide glass thin films using precision resonant cavity refractometry

Chalcogenide glass (ChG) thin films have a wide range of applications in planar photonics that rely on the stability of their optical properties. However, most methods do not provide quantitative optical property data at sufficiently high resolution. We have employed a resonant cavity refractometry technique capable of detecting refractive index changes down to 10−6 refractive index unit (RIU) to study the aging, or sub-Tg structural relaxation kinetics, of Ge23Sb­7S70 ChG. Our study reveals that the refractive index (RI) change due to aging tends to follow stretched exponential behavior, with stretch exponents and rate of index change dependent on initial glass treatment. Thermally annealed devices show the best stability, suggesting that thermal annealing is the appropriate post-deposition treatment method for obtaining stable ChG films.

[1]  P. Boolchand,et al.  Long term aging of selenide glasses: evidence of sub-Tg endotherms and pre-Tg exotherms. , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Steve Madden,et al.  Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance , 2010 .

[3]  D. Allan,et al.  Dynamics of glass relaxation at room temperature. , 2013, Physical review letters.

[4]  Virginie Nazabal,et al.  Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. , 2016, Optics express.

[5]  Yi Yu,et al.  Mid-infrared supercontinuum generation in chalcogenides , 2013 .

[6]  Ming C. Wu,et al.  Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides. , 2018, Optics express.

[7]  Guorong Chen,et al.  A photo-stable chalcogenide glass. , 2008, Optics express.

[8]  Feng Chen,et al.  Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining , 2014 .

[9]  Peter G Wolynes,et al.  Theory of aging in structural glasses. , 2004, The Journal of chemical physics.

[10]  Wenchen Zhou,et al.  Design and fabrication of a compound-eye system using precision molded chalcogenide glass freeform microlens arrays , 2018, Optik.

[11]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[12]  Rodney D. Priestley Physical aging of confined glasses , 2009 .

[13]  J. C. Phillips,et al.  Topological derivation of shape exponents for stretched exponential relaxation. , 2004, The Journal of chemical physics.

[14]  Steve Madden,et al.  Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam. , 2005, Optics express.

[15]  J. C. Phillips,et al.  Stretched exponential relaxation in molecular and electronic glasses , 1996 .

[16]  W. Wong,et al.  Long period polymer waveguide grating device with positive temperature sensitivity , 2004 .

[17]  Ashutosh Sharma,et al.  Infrared microlenses and gratings of chalcogenide: confined self-organization in solution processed thin liquid films , 2018, RSC advances.

[18]  M. Lipson,et al.  First-principle derivation of gain in high-index-contrast waveguides. , 2008, Optics express.

[19]  M Aslund,et al.  Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber. , 2000, Optics letters.

[20]  J. Dyre Heirs of liquid treasures , 2004, Nature materials.

[21]  C. Arnold,et al.  Chalcogenide glass microlenses by inkjet printing , 2011, Applied optics.

[22]  L. Petit,et al.  Processing and characterization of new oxy-sulfo-telluride glasses in the Ge-Sb-Te-S-O system , 2010 .

[23]  Hongtao Lin,et al.  Solution Processing and Resist‐Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration , 2014 .

[24]  Jing Kong,et al.  Chalcogenide glass-on-graphene photonics , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[25]  M. Bayindir,et al.  All-chalcogenide glass omnidirectional photonic band gap variable infrared filters , 2009 .

[26]  J. Dyre Source of non-Arrhenius average relaxation time in glass-forming liquids , 1998 .

[27]  Arnan Mitchell,et al.  High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing. , 2015, Optics express.

[28]  Masaki Asobe,et al.  Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching , 1997 .

[29]  Kathleen Richardson,et al.  Demonstration of chalcogenide glass racetrack microresonators. , 2008, Optics letters.

[30]  Steve Madden,et al.  Progress in optical waveguides fabricated from chalcogenide glasses. , 2010, Optics express.

[31]  Hongtao Lin,et al.  Demonstration of mid-infrared waveguide photonic crystal cavities. , 2013, Optics letters.

[32]  Ray G. DeCorby,et al.  Robust and Flexible Free‐Standing All‐Dielectric Omnidirectional Reflectors , 2007 .

[33]  D. Moss,et al.  High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer , 2006 .

[34]  J. Orava,et al.  Inverse opal photonic crystal of chalcogenide glass by solution processing. , 2011, Journal of colloid and interface science.

[35]  J. C. Phillips Microscopic theory of the Kohlrausch relaxation constant βK , 1994 .

[36]  Tianfeng Zhou,et al.  A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics , 2018, Micromachines.

[37]  V. Shiryaev,et al.  Stability of the Optical and Mechanical Properties of Chalcogenide Fibers , 2002 .

[38]  Hongtao Lin,et al.  3-D Integrated Flexible Glass Photonics , 2013, 1307.5937.

[39]  A. Zadok,et al.  High-Q ring resonators directly written in As 2 S 3 chalcogenide glass films , 2015 .

[40]  A. Kar,et al.  Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics , 2018 .

[41]  Ajoy K. Kar,et al.  Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass , 2012 .

[42]  D. Moss,et al.  Ultrafast all-optical chalcogenide glass photonic circuits , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[43]  Tian Gu,et al.  Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide , 2018 .

[44]  J. D. Musgraves,et al.  Prony series spectra of structural relaxation in N-BK7 for finite element modeling. , 2012, The journal of physical chemistry. A.

[45]  Hongtao Lin,et al.  Integrated flexible chalcogenide glass photonic devices , 2014, Nature Photonics.

[46]  Ole Bang,et al.  Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. , 2018, Optics letters.

[47]  S. V. Nemilov,et al.  Physical Ageing of Silicate Glasses at Room Temperature: General Regularities as a Basis for the Theory and the Possibility of a priori Calculation of the Ageing Rate , 2000 .

[48]  J. Choi,et al.  Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses , 2016 .

[49]  J. C. Phillips,et al.  Microscopic aspects of Stretched Exponential Relaxation (SER) in homogeneous molecular and network glasses and polymers , 2010, 1005.0648.

[50]  Wei Zhang,et al.  Low-loss photonic device in Ge-Sb-S chalcogenide glass. , 2016, Optics letters.

[51]  Jerome Michon,et al.  A new twist on glass: A brittle material enabling flexible integrated photonics , 2017 .

[52]  R. N. Karekar,et al.  Effect of minute’s-scale aging on refractive index of chopped and non-chopped optical films , 1983 .

[53]  R. Golovchak,et al.  Optical signature of structural relaxation in glassy As10Se90 , 2010 .

[54]  Jacklyn Novak,et al.  Effect of annealing conditions on the physio-chemical properties of spin-coated As_2Se_3 chalcogenide glass films , 2012 .

[55]  P. Knotek,et al.  Photo-induced effects of the virgin Ge24.9Sb11.6S63.5 film , 2015 .

[56]  J. Saiter,et al.  Very long physical ageing in inorganic polymers exemplified by the GexSe1−x vitreous system , 2005 .

[57]  J. Dyre Why are glass-forming liquids non-Arrhenius? , 1997, cond-mat/9712065.

[58]  Kathleen Richardson,et al.  Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films , 2008 .

[59]  E. Lesniewska,et al.  Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile , 2015 .

[60]  Stephen Kozacik,et al.  Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. , 2013, Optics letters.

[61]  M. Haney,et al.  A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects , 2013, Journal of Lightwave Technology.

[62]  Anupama Yadav,et al.  Monolithically integrated stretchable photonics , 2017, Light: Science & Applications.

[63]  E. Černošková,et al.  Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions , 2017 .

[64]  D. Hewak,et al.  Deposition and characterization of germanium sulphide glass planar waveguides. , 2004, Optics express.

[65]  Raman Kashyap,et al.  Fabrication of ultrafast laser written low-loss waveguides in flexible As₂S₃ chalcogenide glass tape. , 2016, Optics letters.

[66]  L. Deng,et al.  Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics , 2017, Nature Communications.

[67]  R. Golovchak,et al.  On the compositional diversity of physical aging kinetics in chalcogenide glasses , 2016 .

[68]  R. Golovchak,et al.  Crossover between cooperative and fractal relaxation in complex glass-formers , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[69]  Kinetics of light-assisted physical ageing in S-rich arsenic sulphide glasses , 2016, Bulletin of Materials Science.

[70]  Johann Troles,et al.  Recent advances in chalcogenide glasses , 2004 .

[71]  Sophie LaRochelle,et al.  First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses , 1999 .

[72]  D. A. Pinnow,et al.  Optical aging characteristics of borosilicate clad fused silica core fiber optical waveguides , 1975 .

[73]  R. Golovchak,et al.  In search of energy landscape for network glasses , 2011 .

[74]  S. Dai,et al.  Fabrication and characterization of Ge_20As_20Se_15Te_45 chalcogenide glass for photonic crystal by nanoimprint lithography , 2016 .

[75]  Caroline Vigreux,et al.  Wide-range transmitting chalcogenide films and development of micro-components for infrared integrated optics applications , 2014 .

[76]  S. Kozyukhin,et al.  Physical aging of chalcogenide glasses , 2010 .

[77]  Kathleen Richardson,et al.  Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques , 2011 .

[78]  Pierre Lucas,et al.  Energy landscape and photoinduced structural changes in chalcogenide glasses , 2006 .

[79]  Ping Zhang,et al.  Foldable and Cytocompatible Sol-gel TiO2 Photonics , 2015, Scientific Reports.

[80]  Ping Zhang,et al.  Flexible integrated photonics: where materials, mechanics and optics meet [Invited] , 2013 .

[81]  R. Ramponi,et al.  Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass , 2018, Journal of Physics: Photonics.

[82]  Leslie Brandon Shaw,et al.  Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials , 2017 .

[83]  Dirk Englund,et al.  High-performance flexible waveguide-integrated photodetectors , 2018 .

[84]  Raman Kashyap,et al.  Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics , 2015, Scientific Reports.

[85]  Jonathan Butement,et al.  Fabrication and characterization of high-contrast mid-infrared GeTe₄ channel waveguides. , 2015, Optics letters.

[86]  Juejun Hu,et al.  Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon , 2012 .