Numerical Implementation of the QuEST Function

This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as large-dimensional asymptotics. Recently, Ledoit and Wolf (2015) have proposed an estimator of the eigenvalues of the population covariance matrix that is consistent according to a mean-square criterion under large-dimensional asymptotics. It requires numerical inversion of a multivariate nonrandom function which they call the QuEST function. The present paper explains how to numerically implement the QuEST function in practice through a series of six successive steps. It also provides an algorithm to compute the Jacobian analytically, which is necessary for numerical inversion by a nonlinear optimizer. Monte Carlo simulations document the effectiveness of the code.

[1]  Simon King,et al.  Diagonal priors for full covariance speech recognition , 2009, 2009 IEEE Workshop on Automatic Speech Recognition & Understanding.

[2]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[3]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[4]  Michael Wolf,et al.  Spectrum Estimation: A Unified Framework for Covariance Matrix Estimation and PCA in Large Dimensions , 2013, J. Multivar. Anal..

[5]  Olivier Ledoit,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.

[6]  Jianfeng Yao,et al.  Estimation of the population spectral distribution from a large dimensional sample covariance matrix , 2013, 1302.0355.

[7]  Dajun Sun,et al.  Robust adaptive acoustic vector sensor beamforming using automated diagonal loading , 2009 .

[8]  Alfred O. Hero,et al.  Shrinkage Algorithms for MMSE Covariance Estimation , 2009, IEEE Transactions on Signal Processing.

[9]  Tatsuya Kubokawa,et al.  "Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory " , 2015 .

[10]  Noureddine El Karoui Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.

[11]  Olivier Ledoit,et al.  Optimal Estimation of a Large-Dimensional Covariance Matrix Under Stein's Loss , 2017, Bernoulli.

[12]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[13]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[14]  Stefan Haufe,et al.  EEG potentials predict upcoming emergency brakings during simulated driving , 2011, Journal of neural engineering.

[15]  M. Newton,et al.  Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. , 2007, Cancer research.

[16]  Robert F. Engle,et al.  Large Dynamic Covariance Matrices , 2017 .

[17]  S. Péché,et al.  Eigenvectors of some large sample covariance matrix ensembles , 2009 .

[18]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[19]  Jianfeng Yao,et al.  Eigenvalue Estimation of Parameterized Covariance Matrices of Large Dimensional Data , 2012, IEEE Transactions on Signal Processing.

[20]  J. W. Silverstein,et al.  Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .

[21]  Jianfeng Yao,et al.  ON ESTIMATION OF THE POPULATION SPECTRAL DISTRIBUTION FROM A HIGH‐DIMENSIONAL SAMPLE COVARIANCE MATRIX , 2010 .

[22]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[23]  Olivier Ledoit,et al.  Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks , 2017 .

[24]  K. A. Remley,et al.  Reverberation Chamber Measurement Correlation , 2012, IEEE Transactions on Electromagnetic Compatibility.

[25]  Mary F. Wheeler,et al.  An iterative stochastic ensemble method for parameter estimation of subsurface flow models , 2013, J. Comput. Phys..

[26]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[27]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[28]  C. Stein Lectures on the theory of estimation of many parameters , 1986 .

[29]  J. W. Silverstein Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices , 1995 .

[30]  Xavier Mestre,et al.  Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.

[31]  Nilah Monnier,et al.  Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: application to simulated and in vitro data. , 2012, Analytical chemistry.

[32]  Aurélien Ribes,et al.  Application of regularised optimal fingerprinting to attribution. Part I: method, properties and idealised analysis , 2013, Climate Dynamics.

[33]  Bernard Delyon,et al.  On a model selection problem from high-dimensional sample covariance matrices , 2011, J. Multivar. Anal..

[34]  Edgar Dobriban,et al.  Efficient Computation of Limit Spectra of Sample Covariance Matrices , 2015, 1507.01649.

[35]  Olivier Ledoit,et al.  Eigenvectors of some large sample covariance matrix ensembles , 2009, 0911.3010.

[36]  Z. Bai,et al.  Large Sample Covariance Matrices and High-Dimensional Data Analysis , 2015 .

[37]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[38]  Clifford Lam,et al.  Nonparametric eigenvalue-regularized precision or covariance matrix estimator , 2016 .

[39]  Piotr Fryzlewicz,et al.  NOVELIST estimator of large correlation and covariance matrices and their inverses , 2018, TEST.

[40]  Christian M. Hafner,et al.  On the estimation of dynamic conditional correlation models , 2012, Comput. Stat. Data Anal..

[41]  P. Kumaraswamy A generalized probability density function for double-bounded random processes , 1980 .

[42]  Jianfeng Yao,et al.  Identifying the number of factors from singular values of a large sample auto-covariance matrix , 2017 .

[43]  Cuntai Guan,et al.  An Efficient P300-based Brain-Computer Interface with Minimal Calibration Time , 2009, NIPS 2009.

[44]  M. C. Jones Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages , 2009 .

[45]  Aurélien Ribes,et al.  Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature , 2013, Climate Dynamics.

[46]  Charles A. Bouman,et al.  Evaluating and improving local hyperspectral anomaly detectors , 2011, 2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).

[47]  Erik Weitnauer,et al.  A method for outdoor skateboarding video games , 2010, Advances in Computer Entertainment Technology.

[48]  Clifford S. Stein Estimation of a covariance matrix , 1975 .

[49]  A. Edelman,et al.  Statistical eigen-inference from large Wishart matrices , 2007, math/0701314.

[50]  K. Markon,et al.  Modeling psychopathology structure: a symptom-level analysis of Axis I and II disorders , 2009, Psychological Medicine.

[51]  J. W. Silverstein,et al.  EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .

[52]  Spilios D. Fassois,et al.  Vibration-Based Damage Diagnosis in a Laboratory Cable–Stayed Bridge Model via an RCP–ARX Model Based Method , 2011 .