Comparing Business Intelligence and Big Data Skills

The required skill set for dealing with big data has not yet been studied empirically. By analyzing and interpreting the statistical results of a text mining application on job advertisements, we develop a competency taxonomy for big data and business intelligence. Our findings can guide individual professionals, organizations, and academic institutions in assessing and advancing their BD and BI competencies.

[1]  James E. Cates,et al.  The Ladder of Business Intelligence (LOBI): a framework for enterprise IT planning and architecture , 2005, Int. J. Bus. Inf. Syst..

[2]  S. Fawcett,et al.  Data Science, Predictive Analytics, and Big Data: A Revolution that Will Transform Supply Chain Design and Management , 2013 .

[3]  J. Manyika Big data: The next frontier for innovation, competition, and productivity , 2011 .

[4]  Mike Loukides,et al.  What Is Data Science , 2011 .

[5]  Hans Ulrich Buhl Interview with Martin Petry on “Big Data” , 2013, Bus. Inf. Syst. Eng..

[6]  Peter W. Foltz,et al.  An introduction to latent semantic analysis , 1998 .

[7]  E. Gebel So you want to be a scientist. , 2013, Diabetes forecast.

[8]  H. James Nelson,et al.  Mining for Computing Jobs , 2010, IEEE Software.

[9]  Jan vom Brocke,et al.  Identifying and Characterizing Topics in Enterprise Content Management: a Latent Semantic Analysis of Vendor Case studies , 2014, ECIS.

[10]  Robert Winter,et al.  Business Intelligence Maturity: Development and Evaluation of a Theoretical Model , 2011, 2011 44th Hawaii International Conference on System Sciences.

[11]  James D. McKeen,et al.  The Evolution of IS Job Skills: A Content Analysis of IS Job Advertisements from 1970 to 1990 , 1995, MIS Q..

[12]  Helmut Krcmar,et al.  Big Data , 2014, Wirtschaftsinf..

[13]  Lucian L. Visinescu,et al.  Text-mining the voice of the people , 2012, Commun. ACM.

[14]  Lynette Kvasny,et al.  Changing patterns in IT skill sets 1988-2003: a content analysis of classified advertising , 2004, DATB.

[15]  Kenneth L. Kraemer,et al.  Review: Information Technology and Organizational Performance: An Integrative Model of IT Business Value , 2004, MIS Q..

[16]  Veda C. Storey,et al.  Business Intelligence and Analytics: From Big Data to Big Impact , 2012, MIS Q..

[17]  Vasant Dhar,et al.  Data science and prediction , 2012, CACM.

[18]  Victor R. Prybutok,et al.  Latent Semantic Analysis: five methodological recommendations , 2012, Eur. J. Inf. Syst..

[19]  Stephen Russell,et al.  Organic Evolution and the Capability Maturity of Business Intelligence , 2010, AMCIS.

[20]  Bill Hostmann,et al.  Magic Quadrant for Business Intelligence Platforms , 2012 .

[21]  Anna Sidorova,et al.  Uncovering the Intellectual Core of the Information Systems Discipline , 2008, MIS Q..

[22]  George Strawn,et al.  Data Scientist , 2016, IT Professional.

[23]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[24]  Tom Fawcett,et al.  Data Science and its Relationship to Big Data and Data-Driven Decision Making , 2013, Big Data.

[25]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[26]  Kristof Coussement,et al.  Improving Customer Complaint Management by Automatic Email Classification Using Linguistic Style Features as Predictors , 2007 .

[27]  Joe Peppard,et al.  Why IT Fumbles Analytics , 2013 .

[28]  T. Davenport Competing on analytics. , 2006, Harvard business review.

[29]  David James Power,et al.  A brief history of decision support systems , 2003, WWW 2003.

[30]  J. Barney Firm Resources and Sustained Competitive Advantage , 1991 .

[31]  Michael Cox,et al.  Application-controlled demand paging for out-of-core visualization , 1997 .

[32]  Martin Hilti IDENTIFYING THE ROLE OF INFORMATION SYSTEMS IN ACHIEVING ENERGY-RELATED ENVIRONMENTAL SUSTAINABILITY USING TEXT MINING , 2014 .

[33]  Barbara Dinter,et al.  The Maturing of a Business Intelligence Maturity Model , 2012, AMCIS.

[34]  Dirk S. Hovorka,et al.  Analyzing unstructured text data: Using latent categorization to identify intellectual communities in information systems , 2008, Decis. Support Syst..

[35]  Jan vom Brocke,et al.  How In-memory Technology Can Create Business Value: Insights from the Hilti Case , 2014, Commun. Assoc. Inf. Syst..