Multipartite separability inequalities exponentially stronger than local reality inequalities.

I show that separability of N-partite quantum states implies new inequalities on Bell correlations which are stronger than the corresponding Mermin-Roy-Singh local reality inequalities by a factor of 2((N-1)/2).

[1]  V. Scarani,et al.  Bell-type inequalities to detect true n-body nonseparability. , 2002, Physical review letters.

[2]  Sufficient conditions for three-particle entanglement and their tests in recent experiments , 2001, quant-ph/0107072.

[3]  P. Knight,et al.  Entangled quantum systems and the Schmidt decomposition , 1995 .

[4]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[5]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[6]  L. J. Landau,et al.  On the violation of Bell's inequality in quantum theory , 1987 .

[7]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[8]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[9]  D. Bruß Characterizing Entanglement , 2001, quant-ph/0110078.

[10]  N. Gisin,et al.  Maximal violation of Bell's inequality for arbitrarily large spin , 1992 .

[11]  Ardehali Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[13]  H. Bechmann-Pasquinucci,et al.  Bell inequality, Bell states and maximally entangled states for n qubits , 1998, quant-ph/9804045.

[14]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[15]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[16]  Roy,et al.  Tests of signal locality and Einstein-Bell locality for multiparticle systems. , 1991, Physical review letters.

[17]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .

[18]  M. Seevinck,et al.  Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. , 2002, Physical review letters.

[19]  A. V. Belinskii,et al.  Interference of light and Bell's theorem , 1993 .

[20]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[21]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[22]  M. Wolf,et al.  All-multipartite Bell-correlation inequalities for two dichotomic observables per site , 2001, quant-ph/0102024.