Tractable Bayesian density regression via logit stick-breaking priors
暂无分享,去创建一个
[1] J. Atchison,et al. Logistic-normal distributions:Some properties and uses , 1980 .
[2] Peter Müller,et al. Semiparametric Bayesian classification with longitudinal markers , 2007, Journal of the Royal Statistical Society. Series C, Applied statistics.
[3] T. Amemiya. QUALITATIVE RESPONSE MODELS: A SURVEY , 1981 .
[4] Beom Seuk Hwang,et al. Semiparametric Bayesian joint modeling of a binary and continuous outcome with applications in toxicological risk assessment , 2014, Statistics in medicine.
[5] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[6] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[7] S. MacEachern,et al. An ANOVA Model for Dependent Random Measures , 2004 .
[8] Lancelot F. James,et al. Approximate Dirichlet Process Computing in Finite Normal Mixtures , 2002 .
[9] David B. Dunson,et al. Logistic Stick-Breaking Process , 2011, J. Mach. Learn. Res..
[10] Daniele Durante,et al. Conditionally Conjugate Mean-Field Variational Bayes for Logistic Models , 2017, Statistical Science.
[11] Stephen G. Walker,et al. Slice sampling mixture models , 2011, Stat. Comput..
[12] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[13] Max Welling,et al. Bayesian k-Means as a Maximization-Expectation Algorithm , 2009, Neural Computation.
[14] James G. Scott,et al. Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.
[15] Luis Gutiérrez,et al. A time dependent Bayesian nonparametric model for air quality analysis , 2016, Comput. Stat. Data Anal..
[16] A. V. D. Vaart,et al. Posterior convergence rates of Dirichlet mixtures at smooth densities , 2007, 0708.1885.
[17] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[18] Aaron Smith,et al. MCMC for Imbalanced Categorical Data , 2016, Journal of the American Statistical Association.
[19] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[20] Hee Min Choi,et al. The Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic , 2013 .
[21] S. MacEachern,et al. Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .
[22] J. E. Griffin,et al. Order-Based Dependent Dirichlet Processes , 2006 .
[23] Fernando A. Quintana,et al. On the Support of MacEachern’s Dependent Dirichlet Processes and Extensions , 2012 .
[24] Sean Gerrish,et al. Black Box Variational Inference , 2013, AISTATS.
[25] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[26] Vivekananda Roy,et al. Analysis of the Pólya-Gamma block Gibbs sampler for Bayesian logistic linear mixed models , 2017, Statistics & Probability Letters.
[27] J. Ghosh,et al. POSTERIOR CONSISTENCY OF DIRICHLET MIXTURES IN DENSITY ESTIMATION , 1999 .
[28] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[29] David B. Dunson,et al. Posterior consistency in conditional distribution estimation , 2013, J. Multivar. Anal..
[30] Michael I. Jordan,et al. Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes , 2015, NIPS.
[31] D. Dunson,et al. Convex mixture regression for quantitative risk assessment , 2017, Biometrics.
[32] David B Dunson,et al. Nonparametric Bayesian models through probit stick-breaking processes. , 2011, Bayesian analysis.
[33] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[34] Xiao-Li Meng,et al. Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .
[35] D. Dunson,et al. Kernel stick-breaking processes. , 2008, Biometrika.
[36] Stephen G. Walker,et al. Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..
[37] J. Ibrahim,et al. Conjugate priors for generalized linear models , 2003 .
[38] Vivekananda Roy,et al. Geometric ergodicity of Polya-Gamma Gibbs sampler for Bayesian logistic regression with a flat prior , 2018, 1802.06248.
[39] Michael I. Jordan,et al. Bayesian parameter estimation via variational methods , 2000, Stat. Comput..
[40] David B. Dunson,et al. Improving prediction from dirichlet process mixtures via enrichment , 2014, J. Mach. Learn. Res..
[41] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[42] Arnaud Doucet,et al. Bayesian Inference for Dynamic Models with Dirichlet Process Mixtures , 2006, 2006 9th International Conference on Information Fusion.
[43] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[44] Haibo Zhou,et al. Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth , 2001, The Lancet.
[45] Scott W. Linderman,et al. Dependent Multinomial Models Made Easy: Stick-Breaking with the Polya-gamma Augmentation , 2015, NIPS.
[46] Gerhard Tutz,et al. Sequential models in categorical regression , 1991 .
[47] Stephen G. Walker,et al. A Bayesian Nonparametric Regression Model With Normalized Weights: A Study of Hippocampal Atrophy in Alzheimer’s Disease , 2014 .
[48] P. Billingsley,et al. Probability and Measure , 1980 .
[49] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[50] Jim E. Griffin,et al. Stick-breaking autoregressive processes , 2011 .
[51] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .