The evolution of amorphous hydrocarbons in the ISM: dust modelling from a new vantage point

Context. The evolution of amorphous hydrocarbon materials, a-C(:H), principally resulting from ultraviolet (UV) photon absorptioninduced processing, are likely at the heart of the variations in the observed properties of dust in the interstellar medium. Aims. The consequences of the size-dependent and compositional variations in a-C(:H), from aliphatic-rich a-C:H to aromatic-rich a-C, are studied within the context of the interstellar dust extinction and emission. Methods. Newly-derived optical property data for a-C(:H) materials, combined with that for an amorphous forsterite-type silicate with iron nano-particle inclusions, a-SilFe, are used to explore dust evolution in the interstellar medium. Results. We present a new dust model that consists of a power-law distribution of small a-C grains and log-normal distributions of large a-SilFe and a-C(:H) grains. The model, which is firmly anchored by laboratory-data, is shown to quite naturally explain the variations in the infrared (IR) to far-ultraviolet (FUV) extinction, the 217 nm UV bump, the IR absorption and emission bands and the IR-mm dust emission. Conclusions. The major strengths of the new model are its inherent simplicity and built-in capacity to follow dust evolution in interstellar media. We show that mantle accretion in molecular clouds and UV photo-processing in photo-dominated regions are likely the major drivers of dust evolution.

[1]  M. Köhler,et al.  Aggregate dust connections and emissivity enhancements , 2011 .

[2]  G. Wright,et al.  Spectropolarimetry of the 3.4 μm Feature in the Diffuse ISM toward the Galactic Center Quintuplet Cluster , 2006, astro-ph/0607245.

[3]  J. Mathis Interstellar dust and extinction , 1987 .

[4]  A. Jones,et al.  Variations on a theme - the evolution of hydrocarbon solids: , 2012, 1511.01673.

[5]  B. Draine,et al.  THE CARRIERS OF THE INTERSTELLAR UNIDENTIFIED INFRARED EMISSION FEATURES: AROMATIC OR ALIPHATIC? , 2012, 1210.6558.

[6]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[7]  N. Boudet,et al.  Far-infrared to millimeter astrophysical dust emission. I. A model based on physical properties of a , 2007 .

[8]  T. Henning,et al.  The Ubiquity of Micrometer-Sized Dust Grains in the Dense Interstellar Medium , 2010, Science.

[9]  Orsay,et al.  Polycyclic aromatic hydrocarbon processing by cosmic rays , 2010, 1012.1599.

[10]  E. Dartois,et al.  Diffuse interstellar medium organic polymers: Photoproduction of the 3.4, 6.85 and 7.25 μm features , 2004 .

[11]  S. Tobita,et al.  SIZE EFFECTS ON DISSOCIATION RATES OF POLYCYCLIC AROMATIC HYDROCARBON CATIONS : LABORATORY STUDIES AND ASTROPHYSICAL IMPLICATIONS , 1994 .

[12]  Michael Thorpe,et al.  Continuous deformations in random networks , 1983 .

[13]  John A. Parkhill,et al.  Near-Infrared Spectroscopy of Nitrogenated Polycyclic Aromatic Hydrocarbon Cations from 0.7 to 2.5 μm , 2008 .

[14]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .

[15]  G. Wright,et al.  Spectropolarimetric Constraints on the Nature of the 3.4 Micron Absorber in the Interstellar Medium , 1999 .

[16]  K. Nandy,et al.  The Ultraviolet Galactic Background from TD-1 Satellite Observations , 1976 .

[17]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[18]  M. Tamor,et al.  Graphitic network models of ‘‘diamondlike’’ carbon , 1990 .

[19]  A New 3.25 Micron Absorption Feature toward Monoceros R2/IRS 3 , 1995, astro-ph/9508056.

[20]  J. Robertson,et al.  Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  H. Leroux,et al.  The origin of GEMS in IDPs as deduced from microstructural evolution of amorphous silicates with annealing , 2006, astro-ph/0602079.

[22]  E. Dartois,et al.  Organic matter in Seyfert 2 nuclei: Comparison with our Galactic center lines of sight , 2004, astro-ph/0405327.

[23]  A. Abergel,et al.  Dust processing in photodissociation regions Mid-IR emission modelling of NGC2023N , 2008, 0809.5026.

[24]  J. Bernard,et al.  Temperature Dependence of the Submillimeter Absorption Coefficient of Amorphous Silicate Grains , 2005 .

[25]  Observations of ultraviolet radiation scattered by dust around λ Orionis , 1980 .

[26]  A. Tielens,et al.  THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS , 2013 .

[27]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[28]  R. J. Bell,et al.  Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. , 1988, Applied optics.

[29]  J. Murthy,et al.  PROBING THE ROLE OF CARBON IN ULTRAVIOLET EXTINCTION ALONG GALACTIC SIGHT LINES , 2012 .

[30]  Orsay,et al.  Polycyclic aromatic hydrocarbon processing in interstellar shocks , 2009, 0910.2461.

[31]  L. Nittler,et al.  Characterization of Presolar Silicate and Oxide Grains in Primitive Carbonaceous Chondrites , 2007 .

[32]  G. Döhler,et al.  A topological-dynamical model of amorphycity , 1980 .

[33]  S. Bowyer,et al.  The albedo and scattering phase function of interstellar dust and the diffuse background at far-ultraviolet wavelengths. , 1991, The Astrophysical journal.

[34]  Are PAHs precursors of small hydrocarbons in photo-dissociation regions? The Horsehead case , 2005, astro-ph/0501339.

[35]  S. Kwok,et al.  UNIDENTIFIED INFRARED EMISSION BANDS: PAHs or MAONs? , 2013, 1304.7629.

[36]  J. L. Bourlot,et al.  The global dust SED: tracing the nature and evolution of dust with DustEM , 2010, 1010.2769.

[37]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[38]  J. Greenberg,et al.  A far-ultraviolet extinction law - What does it mean? , 1983 .

[39]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[40]  Y. Minowa,et al.  Spatially Resolved 3 Micron Spectroscopy of IRAS 22272+5435: Formation and Evolution of Aliphatic Hydrocarbon Dust in Proto-Planetary Nebulae , 2003, astro-ph/0301311.

[41]  E. Peeters,et al.  ON THE EXCITATION AND FORMATION OF CIRCUMSTELLAR FULLERENES , 2012, 1207.5794.

[42]  E. Dartois,et al.  Ultraviolet photoproduction of ISM dust Laboratory characterisation and astrophysical relevance , 2005 .

[43]  Blair D. Savage,et al.  Observed Properties of Interstellar Dust , 1979 .

[44]  A. Jones,et al.  Variations on a theme – the evolution of hydrocarbon solids - II. Optical property modelling – the optEC(s) model , 2012, 1511.01682.

[45]  L. Colangeli,et al.  On the Electronic Structure of Small Carbon Grains of Astrophysical Interest , 1995 .

[46]  E. Dartois,et al.  Photoluminescence of hydrogenated amorphous carbons - Wavelength-dependent yield and implications for the extended red emission , 2010 .

[47]  Sanjeev S. Seahra,et al.  Luminescence from Hydrogenated Amorphous Carbon and Extended Red Emission from Nebulae , 1997 .

[48]  E. Micelotta,et al.  Small hydrocarbon particle erosion in a hot gas - A comparative study , 2012 .

[49]  J. Angus,et al.  Dense ‘‘diamondlike’’ hydrocarbons as random covalent networks , 1988 .

[50]  J. Angus,et al.  Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases , 1988, Science.

[51]  J. Robertson Hard amorphous (diamond-like) carbons , 1991 .

[52]  A. Abergel,et al.  Evolution of dust properties in an interstellar filament , 2003 .

[53]  Infrared Emission from Interstellar Dust. I. Stochastic Heating of Small Grains , 2000, astro-ph/0011318.

[54]  A. Tielens TETONS 4: GALACTIC STRUCTURE, STARS, AND THE INTERSTELLAR MEDIUM , 2001 .

[55]  Y. Pendleton,et al.  The Effects of Ion Irradiation on the Evolution of the Carrier of the 3.4 Micron Interstellar Absorption Band , 2003 .

[56]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[57]  Edward L. Fitzpatrick,et al.  AN ANALYSIS OF THE SHAPES OF INTERSTELLAR EXTINCTION CURVES. VI. THE NEAR-IR EXTINCTION LAW , 2009, 0905.0133.

[58]  C. Joblin,et al.  The profiles of the aromatic infrared bands explained with molecular carriers , 2002 .

[59]  Robertson,et al.  Electronic and atomic structure of amorphous carbon. , 1987, Physical review. B, Condensed matter.

[60]  A. Jones,et al.  Carbonaceous dust in interstellar shock waves: hydrogenated amorphous carbon (a-C:H) vs. graphite , 2008 .

[61]  T. Owen,et al.  Organic materials in planetary and protoplanetary systems: nature or nurture? , 2011 .

[62]  submitted to The Astrophysical Journal Letters Mid-Infrared Spectropolarimetric Constraints on the Core-Mantle Interstellar Dust Model , 2002 .

[63]  A. Tielens,et al.  Pixie Dust: The Silicate Features in the Diffuse Interstellar Medium , 2005, astro-ph/0510156.

[64]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[65]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[66]  E. Dartois,et al.  Ion irradiation of carbonaceous interstellar analogues - Effects of cosmic rays on the 3.4 μm interstellar absorption band , 2011 .

[67]  H. Kaneda,et al.  AKARI near-infrared spectroscopy of the aromatic and aliphatic hydrocarbon emission features in the galactic superwind of M 82 , 2012, 1203.2794.

[68]  T. Henning,et al.  Far-ultraviolet to near-infrared optical properties of carbon nanoparticles produced by pulsed-laser pyrolysis of hydrocarbons and their relation with structural variations , 2007 .

[69]  D. Massa,et al.  An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology , 2007, 0705.0154.

[70]  T. Sasseen,et al.  Radiative Transfer Analysis of Far-Ultraviolet Background Observations Obtained with the Far Ultraviolet Space Telescope , 1997, astro-ph/9701017.

[71]  C. Joblin,et al.  Evaporating very small grains as tracers of the UV radiation field in photo-dissociation regions , 2012, 1204.4669.

[72]  S. Kwok,et al.  Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features , 2011, Nature.

[73]  H. Mutschke,et al.  UV irradiated hydrogenated amorphous carbon (HAC) materials as a carrier candidate of the interstellar UV bump at 217.5 nm , 2011 .

[74]  W. W. Duley,et al.  Ultraviolet and Infrared Refractive Indices of Amorphous Silicates , 1996 .

[75]  R. Larson A Simple Probabilistic Theory of Fragmentation , 1973 .

[76]  Aigen Li,et al.  Toward understanding the 3.4 μm and 9.7 μm extinction feature variations from the local diffuse interstellar medium to the Galactic center , 2008, 0812.2016.

[77]  Joseph A. Nuth,et al.  Dust destruction in the ISM: a re-evaluation of dust lifetimes , 2011 .

[78]  P. K. Gallagher,et al.  Handbook of thermal analysis and calorimetry , 1998 .

[79]  D. Hudgins,et al.  Experimental Near-Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons between 0.7 and 2.5 μm , 2005 .

[80]  J. Bernard-Salas,et al.  The Unusual Hydrocarbon Emission from the Early Carbon Star HD 100764: The Connection between Aromatics and Aliphatics , 2007, 0705.0905.

[81]  L. Colangeli,et al.  Activation of an Ultraviolet Resonance in Hydrogenated Amorphous Carbon Grains by Exposure to Ultraviolet Radiation , 1996 .

[82]  G. Sloan,et al.  Variations in the 3 Micron Spectrum across the Orion Bar: Polycyclic Aromatic Hydrocarbons and Related Molecules , 1997, The Astrophysical journal.

[83]  J. Mathis,et al.  Composite interstellar grains , 1989 .

[84]  J. Robertson Clustering and gap states in amorphous carbon , 1988 .

[85]  S. Zeidler,et al.  Near-infrared absorption properties of oxygen-rich stardust analogs. The influence of coloring metal ions , 2011, 1101.0695.

[86]  A. Jones Heteroatom-doped hydrogenated amorphous carbons, a-C:H:X - “Volatile” silicon, sulphur and nitrogen depletion, blue photoluminescence, diffuse interstellar bands and ferro-magnetic carbon grain connections , 2013, 1411.5858.

[87]  C. F. Lillie,et al.  Ultraviolet photometry from the orbiting astronomical observatory. XXV. Diffuse galactic light in the 1500--4200 A region and the scattering properties of interstellar dust grains , 1976 .

[88]  R. Genzel,et al.  LINE DERIVED INFRARED EXTINCTION TOWARD THE GALACTIC CENTER , 2011, 1105.2822.

[89]  J. Brucato,et al.  Temperature Dependence of the Absorption Coefficient of Cosmic Analog Grains in the Wavelength Range 20 Microns to 2 Millimeters , 1998 .

[90]  E. Peeters,et al.  THE FORMATION OF COSMIC FULLERENES FROM AROPHATIC CLUSTERS , 2012, 1207.5817.

[91]  V. Mennella Activation of the 3.47 μm Band by H Atom Irradiation of Carbon Grains Covered with a Water Ice Layer at 12 K , 2008 .

[92]  A. Jones,et al.  Variations on a theme – the evolution of hydrocarbon solids - III. Size-dependent properties – the optEC(s)(a) model , 2012, 1511.01684.

[93]  A. Tielens,et al.  Grain Shattering in Shocks: The Interstellar Grain Size Distribution , 1996 .

[94]  Cloudshine: New light on dark clouds , 2005, astro-ph/0510624.

[95]  S. Drapatz,et al.  The Aromatic Infrared Bands as seen by ISO-SWS: Probing the PAH model , 2001, astro-ph/0104144.

[96]  Peter G. Martin,et al.  Evolution of dust in the Orion Bar with Herschel , 2012, 1202.1624.

[97]  T. Y. Wang,et al.  Quantum Confinement Effect in Diamond Nanocrystals Studied by X-Ray-Absorption Spectroscopy , 1999 .

[98]  E. Dartois,et al.  The 6.2 μm band position in laboratory and astrophysical spectra: a tracer of the aliphatic to aromatic evolution of interstellar carbonaceous dust , 2008 .

[99]  A. Abergel,et al.  Dust coagulation processes as constrained by far-infrared observations , 2012 .

[100]  J. Robertson Diamond-like amorphous carbon , 2002 .

[101]  Orsay,et al.  Polycyclic aromatic hydrocarbon processing in a hot gas , 2009, 0912.1595.

[102]  S. Beckwith,et al.  Laboratory Results on Millimeter-Wave Absorption in Silicate Grain Materials at Cryogenic Temperatures , 1996 .

[103]  K. Sellgren,et al.  Absorption features in the 3 micron spectra of protostars , 1989 .

[104]  B. Draine,et al.  Temperature fluctuations and infrared emission from interstellar grains. , 1985 .

[105]  Dispersion relations and optical properties of amorphous carbons , 2007 .