Approximate Projection Methods: Part I. Inviscid Analysis

The use of approximate projection methods for modeling low Mach number flows avoids many of the numerical complications associated with exact projection methods, but introduces additional design choices in developing a robust algorithm. In this paper we first explore these design choices in the setting of inviscid incompressible flow using several computational examples. We then develop a framework for analyzing the behavior of the different design variations and use that analysis to explain the features observed in the computations. As part of this work we introduce a new variation of the approximate projection algorithm that combines the advantages of several of the previous versions.

[1]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[2]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[3]  James C. McWilliams,et al.  The emergence of isolated coherent vortices in turbulent flow , 1984, Journal of Fluid Mechanics.

[4]  Ann S. Almgren,et al.  High Reynolds Number Simulations of Axisymmetric Tornado-like Vortices with Adaptive Mesh Refinement , 1997 .

[5]  M. Minion A Projection Method for Locally Refined Grids , 1996 .

[6]  John B. Bell,et al.  An Adaptive Projection Method for Unsteady, Low-Mach Number Combustion , 1998 .

[7]  Ann S. Almgren,et al.  A higher-order projection method for the simulation of unsteady turbulent nonpremixed combustion in an industrial burner , 1994 .

[8]  Phillip Colella,et al.  A second-order projection method for viscous, incompressible flow , 1987 .

[9]  Daniel F. Martin,et al.  A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations , 2000 .

[10]  Ann S. Almgren,et al.  Adaptive simulations of trade cumulus convection , 1999 .

[11]  John B. Bell,et al.  A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..

[12]  Phillip Colella,et al.  An efficient second-order projection method for viscous incompressible flow , 1991 .

[13]  Glenn Joyce,et al.  Negative temperature states for the two-dimensional guiding-centre plasma , 1973, Journal of Plasma Physics.

[14]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[15]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[16]  Mei-Lin Lai,et al.  A Projection Method for Reacting Flow in the Zero Mach Number Limit , 1994 .

[17]  John B. Bell,et al.  A projection method for combustion in the zero Mach number limit , 1993 .

[18]  W. Matthaeus,et al.  Navier–Stokes relaxation to sinh–Poisson states at finite Reynolds numbers , 1993 .

[19]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[20]  John B. Bell,et al.  An Adaptive Mesh Projection Method for Viscous Incompressible Flow , 1997, SIAM J. Sci. Comput..