Explicit MPC: Hard constraint satisfaction under low precision arithmetic

MPC is becoming increasingly implemented on embedded systems, where low precision computation is preferred either to reduce costs, speedup execution or reduce power consumption. However, in a low precision implementation, constraint satisfaction cannot be guaranteed. To enforce constraint satisfaction under numerical errors, we adopt tools from forward error analysis to compute an error bound on the output of the embedded controller. We treat this error as a state disturbance and use it to inform the design of a constraint-tightening robust controller. The technique is validated via a practical implementation on an FPGA evaluation board.

[1]  Jürgen Teich,et al.  Hardware/Software Codesign: The Past, the Present, and Predicting the Future , 2012, Proceedings of the IEEE.

[2]  George A. Constantinides,et al.  Tutorial paper: Parallel architectures for model predictive control , 2009, 2009 European Control Conference (ECC).

[3]  Efstratios N. Pistikopoulos,et al.  An Algorithm for the Solution of Multiparametric Mixed Integer Linear Programming Problems , 2000, Ann. Oper. Res..

[4]  Manfred Morari,et al.  Embedded Online Optimization for Model Predictive Control at Megahertz Rates , 2013, IEEE Transactions on Automatic Control.

[5]  Colin Neil Jones,et al.  A logarithmic-time solution to the point location problem for parametric linear programming , 2006, Autom..

[6]  Eric C. Kerrigan,et al.  Control-Theoretic Forward Error Analysis of Iterative Numerical Algorithms , 2013, IEEE Transactions on Automatic Control.

[7]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[8]  Wayne H. Wolf,et al.  Cyber-physical Systems , 2009, Computer.

[9]  Eric C. Kerrigan,et al.  Constrained LQR for low-precision data representation , 2014, Autom..

[10]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[11]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[12]  Eric C. Kerrigan,et al.  Robust explicit MPC design under finite precision arithmetic , 2014 .

[13]  Eric C. Kerrigan,et al.  Fast FPGA prototyping toolbox for embedded optimization , 2015, 2015 European Control Conference (ECC).

[14]  Puneet Gupta,et al.  Hardware-software codesign , 2002 .

[15]  Marco Storace,et al.  Digital architectures realizing piecewise‐linear multivariate functions: Two FPGA implementations , 2011, Int. J. Circuit Theory Appl..

[16]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[17]  Alberto Bemporad,et al.  Min-max control of constrained uncertain discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[18]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[19]  A. Bemporad,et al.  Efficient on-line computation of constrained optimal control , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[20]  D. Mayne,et al.  Optimal control of constrained, piecewise affine systems with bounded disturbances , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[21]  Eric C. Kerrigan,et al.  A Low Complexity Scaling Method for the Lanczos Kernel in Fixed-Point Arithmetic , 2015, IEEE Transactions on Computers.

[22]  Miroslav Fikar,et al.  Performance-lossless complexity reduction in Explicit MPC , 2010, 49th IEEE Conference on Decision and Control (CDC).

[23]  J. Maciejowski,et al.  Robustly stable feedback min-max model predictive control , 2003, Proceedings of the 2003 American Control Conference, 2003..

[24]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[25]  Martin Mönnigmann,et al.  Fast explicit MPC with multiway trees , 2011 .