Nonuniform seismic excitation has been shown through previous analytical studies to adversely affect the response of long-span bridge structures. To further understand this phenomenon, this study investigates the response of complex straight and curved long-span bridges under the effect of parametrically varying asynchronous motion. The generation process and modeling procedures are presented in a companion paper. A wide-ranging parametric study is performed aimed at isolating the effect of both bridge curvature and the two main sources of asynchronous strong motion: geometric incoherence and the wave-passage effect. Results from this study indicate that response for the 344 m study structure is amplified significantly by nonsynchronous excitation, with displacement amplification factors between 1.6 and 3.4 for all levels of incoherence. This amplification was not constant or easily predicable, demonstrating the importance of inelastic dynamic analysis using asynchronous motion for assessment and design of this class of structure. Additionally, deck stiffness is shown to significantly affect response amplification, through response comparison between the curved and an equivalent straight bridge. Study results are used to suggest an appropriate domain for consideration of asynchronous excitation, as well as an efficient methodology for analysis.
[1]
Giorgio Monti,et al.
Seismic design of bridges accounting for spatial variability of ground motion
,
2005
.
[2]
Kyriazis Pitilakis,et al.
Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil–structure interaction phenomena. Part 1: Methodology and analytical tools
,
2003
.
[3]
Amr S. Elnashai,et al.
Inelastic Dynamic Response of RC Bridges Subjected to Spatial Non-Synchronous Earthquake Motion
,
2000
.
[4]
Kyriazis Pitilakis,et al.
Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil–structure interaction phenomena. Part 2: Parametric study
,
2003
.
[5]
H. L. Wong,et al.
Response of a rigid foundation to a spatially random ground motion
,
1986
.
[6]
Paul C. Jennings,et al.
Spatial variation of ground motion determined from accelerograms recorded on a highway bridge
,
1985
.