VERB: Visualizing and Interpreting Bias Mitigation Techniques Geometrically for Word Representations

Word vector embeddings have been shown to contain and amplify biases in the data they are extracted from. Consequently, many techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this paper, we utilize interactive visualization to increase the interpretability and accessibility of a collection of state-of-the-art debiasing techniques. To aid this, we present the Visualization of Embedding Representations for deBiasing (“VERB”) system, an open-source web-based visualization tool that helps users gain a technical understanding and visual intuition of the inner workings of debiasing techniques, with a focus on their geometric properties. In particular, VERB offers easy-to-follow examples that explore the effects of these debiasing techniques on the geometry of high-dimensional word vectors. To help understand how various debiasing techniques change the underlying geometry, VERB decomposes each technique into interpretable sequences of primitive transformations and highlights their effect on the word vectors using dimensionality reduction and interactive visual exploration. VERB is designed to target natural language processing (NLP) practitioners who are designing decision-making systems on top of word embeddings, and also researchers working with the fairness and ethics of machine learning systems in NLP. It can also serve as a visual medium for education, which helps an NLP novice understand and mitigate biases in word embeddings.

[1]  David Saffo,et al.  Effective Use of Likert Scales in Visualization Evaluations: A Systematic Review , 2022, Comput. Graph. Forum.

[2]  Kari Sentz,et al.  Human-in-the-Loop Refinement of Word Embeddings , 2021, ArXiv.

[3]  Anaelia Ovalle,et al.  Harms of Gender Exclusivity and Challenges in Non-Binary Representation in Language Technologies , 2021, EMNLP.

[4]  Simone Paolo Ponzetto,et al.  DebIE: A Platform for Implicit and Explicit Debiasing of Word Embedding Spaces , 2021, EACL.

[5]  Md Naimul Hoque,et al.  WordBias: An Interactive Visual Tool for Discovering Intersectional Biases Encoded in Word Embeddings , 2021, CHI Extended Abstracts.

[6]  Shaikh Quader,et al.  VisExPreS: A Visual Interactive Toolkit for User-Driven Evaluations of Embeddings , 2020, IEEE Transactions on Visualization and Computer Graphics.

[7]  Liang Gou,et al.  Towards a Flexible Embedding Learning Framework , 2020, 2020 International Conference on Data Mining Workshops (ICDMW).

[8]  Jun Yuan,et al.  A survey of visual analytics techniques for machine learning , 2020, Computational Visual Media.

[9]  Zhuguo Li,et al.  Diagnosing Concept Drift with Visual Analytics , 2020, 2020 IEEE Conference on Visual Analytics Science and Technology (VAST).

[10]  Vivek Srikumar,et al.  OSCaR: Orthogonal Subspace Correction and Rectification of Biases in Word Embeddings , 2020, EMNLP.

[11]  Wei Zhang,et al.  SCANViz: Interpreting the Symbol-Concept Association Captured by Deep Neural Networks through Visual Analytics , 2020, 2020 IEEE Pacific Visualization Symposium (PacificVis).

[12]  Solon Barocas,et al.  Language (Technology) is Power: A Critical Survey of “Bias” in NLP , 2020, ACL.

[13]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[14]  Xi Victoria Lin,et al.  Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation , 2020, ACL.

[15]  Yoav Goldberg,et al.  Null It Out: Guarding Protected Attributes by Iterative Nullspace Projection , 2020, ACL.

[16]  Hang Su,et al.  OoDAnalyzer: Interactive Analysis of Out-of-Distribution Samples , 2020, IEEE Transactions on Visualization and Computer Graphics.

[17]  Nithin Chalapathi,et al.  TopoAct: Visually Exploring the Shape of Activations in Deep Learning , 2019, Comput. Graph. Forum.

[18]  Nithin Chalapathi,et al.  TopoAct: Exploring the Shape of Activations in Deep Learning , 2019, ArXiv.

[19]  Michael Gleicher,et al.  embComp: Visual Interactive Comparison of Vector Embeddings , 2019, IEEE Transactions on Visualization and Computer Graphics.

[20]  Alejandro Barredo Arrieta,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2019, Inf. Fusion.

[21]  Yanqing Peng,et al.  Constrained Non-Affine Alignment of Embeddings , 2019, 2021 IEEE International Conference on Data Mining (ICDM).

[22]  Holger Stitz,et al.  ConfusionFlow: A Model-Agnostic Visualization for Temporal Analysis of Classifier Confusion , 2019, IEEE Transactions on Visualization and Computer Graphics.

[23]  Alex Endert,et al.  Toward a Design Space for Mitigating Cognitive Bias in Vis , 2019, 2019 IEEE Visualization Conference (VIS).

[24]  J. M. Phillips,et al.  On Measuring and Mitigating Biased Inferences of Word Embeddings , 2019, AAAI.

[25]  Omer Levy,et al.  RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.

[26]  Mai ElSherief,et al.  Mitigating Gender Bias in Natural Language Processing: Literature Review , 2019, ACL.

[27]  Jeffrey Heer,et al.  Latent Space Cartography: Visual Analysis of Vector Space Embeddings , 2019, Comput. Graph. Forum.

[28]  Wei Zhang,et al.  Pcard: Personalized Restaurants Recommendation from Card Payment Transaction Records , 2019, WWW.

[29]  Minsuk Kahng,et al.  FAIRVIS: Visual Analytics for Discovering Intersectional Bias in Machine Learning , 2019, 2019 IEEE Conference on Visual Analytics Science and Technology (VAST).

[30]  Yoav Goldberg,et al.  Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them , 2019, NAACL.

[31]  Jeff M. Phillips,et al.  Attenuating Bias in Word Vectors , 2019, AISTATS.

[32]  Zhimin Li,et al.  NLIZE: A Perturbation-Driven Visual Interrogation Tool for Analyzing and Interpreting Natural Language Inference Models , 2019, IEEE Transactions on Visualization and Computer Graphics.

[33]  Tao Li,et al.  Visual Interrogation of Attention-Based Models for Natural Language Inference and Machine Comprehension , 2018, EMNLP.

[34]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[35]  Quan Li,et al.  EmbeddingVis: A Visual Analytics Approach to Comparative Network Embedding Inspection , 2018, 2018 IEEE Conference on Visual Analytics Science and Technology (VAST).

[36]  Zeyu Li,et al.  Learning Gender-Neutral Word Embeddings , 2018, EMNLP.

[37]  J. M. Phillips,et al.  Closed form word embedding alignment , 2018, Knowledge and Information Systems.

[38]  Hao Yang,et al.  GANViz: A Visual Analytics Approach to Understand the Adversarial Game , 2018, IEEE Transactions on Visualization and Computer Graphics.

[39]  Florian Heimerl,et al.  Interactive Analysis of Word Vector Embeddings , 2018, Comput. Graph. Forum.

[40]  Jaegul Choo,et al.  Visual Analytics for Explainable Deep Learning , 2018, IEEE Computer Graphics and Applications.

[41]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[42]  Valerio Pascucci,et al.  Visual Exploration of Semantic Relationships in Neural Word Embeddings , 2018, IEEE Transactions on Visualization and Computer Graphics.

[43]  Dandelion Mané,et al.  Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow , 2018, IEEE Transactions on Visualization and Computer Graphics.

[44]  Elmar Eisemann,et al.  DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks , 2018, IEEE Transactions on Visualization and Computer Graphics.

[45]  Matt J. Kusner,et al.  Counterfactual Fairness , 2017, NIPS.

[46]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[47]  Jun Zhu,et al.  Towards better analysis of machine learning models: A visual analytics perspective , 2017, Vis. Informatics.

[48]  Martin Wattenberg,et al.  Embedding Projector: Interactive Visualization and Interpretation of Embeddings , 2016, ArXiv.

[49]  Joanna Bryson,et al.  Semantics derived automatically from language corpora contain human-like biases , 2016, Science.

[50]  Adam Tauman Kalai,et al.  Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings , 2016, NIPS.

[51]  Minsuk Kahng,et al.  Visual exploration of machine learning results using data cube analysis , 2016, HILDA '16.

[52]  Jakob Uszkoreit,et al.  A Decomposable Attention Model for Natural Language Inference , 2016, EMNLP.

[53]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[54]  Zhen Li,et al.  Towards Better Analysis of Deep Convolutional Neural Networks , 2016, IEEE Transactions on Visualization and Computer Graphics.

[55]  Alex Endert,et al.  InterAxis: Steering Scatterplot Axes via Observation-Level Interaction , 2016, IEEE Transactions on Visualization and Computer Graphics.

[56]  Jian Pei,et al.  Online Visual Analytics of Text Streams , 2015, IEEE Transactions on Visualization and Computer Graphics.

[57]  David Maxwell Chickering,et al.  ModelTracker: Redesigning Performance Analysis Tools for Machine Learning , 2015, CHI.

[58]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[59]  Enrico Bertini,et al.  INFUSE: Interactive Feature Selection for Predictive Modeling of High Dimensional Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[60]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[61]  Jordan Boyd-Graber,et al.  Concurrent Visualization of Relationships between Words and Topics in Topic Models , 2014 .

[62]  Mengchen Liu,et al.  StoryFlow: Tracking the Evolution of Stories , 2013, IEEE Transactions on Visualization and Computer Graphics.

[63]  M. Sedlmair,et al.  A Systematic Review on the Practice of Evaluating Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[64]  Aoying Zhou,et al.  SentiView: Sentiment Analysis and Visualization for Internet Popular Topics , 2013, IEEE Transactions on Human-Machine Systems.

[65]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[66]  Niklas Elmqvist,et al.  Patterns for visualization evaluation , 2012, BELIV '12.

[67]  M. Sheelagh T. Carpendale,et al.  Empirical Studies in Information Visualization: Seven Scenarios , 2012, IEEE Transactions on Visualization and Computer Graphics.

[68]  Jeffrey Heer,et al.  Termite: visualization techniques for assessing textual topic models , 2012, AVI.

[69]  James Davey,et al.  Guiding feature subset selection with an interactive visualization , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[70]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[71]  Junpeng Wang,et al.  LatentVis: Investigating and Comparing Variational Auto-Encoders via Their Latent Space , 2020, CIKM.

[72]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[73]  Alex Endert,et al.  Four Perspectives on Human Bias in Visual Analytics , 2018, Cognitive Biases in Visualizations.

[74]  Jing Wu,et al.  Visual Diagnosis of Tree Boosting Methods , 2018, IEEE Transactions on Visualization and Computer Graphics.

[75]  Bongshin Lee,et al.  Squares: Supporting Interactive Performance Analysis for Multiclass Classifiers , 2017, IEEE Transactions on Visualization and Computer Graphics.

[76]  Paulo E. Rauber,et al.  Visualizing the Hidden Activity of Artificial Neural Networks , 2017, IEEE Transactions on Visualization and Computer Graphics.

[77]  Alison Smith,et al.  erarchie: Interactive Visualization for Hierarchical Topic Models , 2014 .

[78]  E. Wang,et al.  A D3 plug-in for automatic label placement using simulated annealing , 2013 .

[79]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[80]  Marco Tulio Ribeiro,et al.  Association for Computational Linguistics " Why Should I Trust You? " Explaining the Predictions of Any Classifier , 2022 .