Adaptive Biometric Systems That Can Improve with Use

Performances of biometric recognition systems can degrade quickly when the input biometric traits exhibit substantial variations compared to the templates collected during the enrolment stage of system’s users. On the other hand, a lot of new unlabelled biometric data, which could be exploited to adapt the system to input data variations, are made available during the system operation over the time. This chapter deals with adaptive biometric systems that can improve with use by exploiting unlabelled data. After a critical review of previous works on adaptive biometric systems, the use of semi-supervised learning methods for the development of adaptive biometric systems is discussed. Two examples of adaptive biometric recognition systems based on semi-supervised learning are presented along the chapter, and the concept of biometric co-training is introduced for the first time.

[1]  Chin-Hui Lee,et al.  Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains , 1994, IEEE Trans. Speech Audio Process..

[2]  Olac Fuentes,et al.  Face Recognition Using Unlabeled Data , 2003, Computación y Sistemas.

[3]  George Nagy Interactive, Mobile, Distributed Pattern Recognition , 2005, ICIAP.

[4]  David J. Hand,et al.  Classifier Technology and the Illusion of Progress , 2006, math/0606441.

[5]  Nicu Sebe,et al.  Semisupervised learning of classifiers: theory, algorithms, and their application to human-computer interaction , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  George Nagy DocLab Classifiers That Improve with Use , 2004 .

[7]  Maria-Florina Balcan,et al.  Person Identification in Webcam Images: An Application of Semi-Supervised Learning , 2005 .

[8]  Gian Luca Marcialis,et al.  Semi-supervised PCA-Based Face Recognition Using Self-training , 2006, SSPR/SPR.

[9]  Juyang Weng,et al.  Toward automation of learning: the state self-organization problem for a face recognizer , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[10]  M. Tarr Visual Pattern Recognition , 1998 .

[11]  Niall M. Adams,et al.  The impact of changing populations on classifier performance , 1999, KDD '99.

[12]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[13]  Sharath Pankanti,et al.  Biometrics: a grand challenge , 2004, ICPR 2004.

[14]  Fabio Roli Semi-supervised Multiple Classifier Systems: Background and Research Directions , 2005, Multiple Classifier Systems.

[15]  George Nagy Visual pattern recognition in the years ahead , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[16]  Christoph von der Malsburg,et al.  Automatic video indexing with incremental gallery creation: integration of recognition and knowledge acquisition , 1999, 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410).

[17]  Lijin Aryananda,et al.  Recognizing and remembering individuals: online and unsupervised face recognition for humanoid robot , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Gian Luca Marcialis,et al.  Fingerprint verification by fusion of optical and capacitive sensors , 2004, Pattern Recognit. Lett..

[19]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[20]  Kohei Inoue,et al.  Dimensionality Reduction for Semi-supervised Face Recognition , 2005, FSKD.

[21]  Pawan Sinha,et al.  Face Recognition by Humans: Nineteen Results All Computer Vision Researchers Should Know About , 2006, Proceedings of the IEEE.

[22]  Anil K. Jain,et al.  On-line fingerprint verification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[23]  Arun Ross,et al.  Biometric template selection and update: a case study in fingerprints , 2004, Pattern Recognit..

[24]  George Nagy Visual pattern recognition in the years ahead , 2004, ICPR 2004.

[25]  A. Martínez,et al.  The AR face databasae , 1998 .

[26]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[27]  Alexander H. Waibel,et al.  Unsupervised training of a speech recognizer: recent experiments , 1999, EUROSPEECH.

[28]  Gökhan Tür,et al.  Combining active and semi-supervised learning for spoken language understanding , 2005, Speech Commun..

[29]  Xudong Jiang,et al.  Online Fingerprint Template Improvement , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Anil K. Jain,et al.  Template Adaptation based Fingerprint Verification , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[31]  Matthias Seeger,et al.  Learning from Labeled and Unlabeled Data , 2010, Encyclopedia of Machine Learning.

[32]  Alex Pentland,et al.  Eigenfaces for Face Recognition , 1991 .

[33]  Anil K. Jain,et al.  FVC2002: Second Fingerprint Verification Competition , 2002, Object recognition supported by user interaction for service robots.

[34]  Vittorio Castelli,et al.  On the exponential value of labeled samples , 1995, Pattern Recognit. Lett..

[35]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[36]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[37]  Rahul Sukthankar,et al.  Argus: the digital doorman , 2001, IEEE Intelligent Systems.

[38]  Tsuhan Chen,et al.  Eigenspace updating for non-stationary process and its application to face recognition , 2003, Pattern Recognit..

[39]  K. Okada,et al.  An adaptive person recognition system , 2001, Proceedings 10th IEEE International Workshop on Robot and Human Interactive Communication. ROMAN 2001 (Cat. No.01TH8591).

[40]  Arun Ross,et al.  Handbook of Multibiometrics , 2006, The Kluwer international series on biometrics.

[41]  純一 長谷川,et al.  8th International Conference on Pattern Recognition(ICPR)に出席して , 1987 .

[42]  Raymond J. Mooney,et al.  Diverse ensembles for active learning , 2004, ICML.

[43]  Zhi-Hua Zhou,et al.  Face recognition from a single image per person: A survey , 2006, Pattern Recognit..