A review on anode materials for lithium/sodium-ion batteries

[1]  B. Saruhan,et al.  Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications , 2023, Batteries.

[2]  A. Chroneos,et al.  Latest advances and comparative analysis of MXenes as anode and cathode electrodes in secondary batteries , 2023, Journal of Applied Physics.

[3]  Shancheng Yan,et al.  Review on the Energy Transformation Application of Black Phosphorus and Its Composites , 2022, Catalysts.

[4]  J. Smajic,et al.  The Interaction of Red Phosphorus with Supporting Carbon Additives in Lithium-ion Battery Anodes , 2022, Journal of Electroanalytical Chemistry.

[5]  Shenglin Xiong,et al.  Interfacial design of silicon/carbon anodes for rechargeable batteries: A review , 2022, Journal of Energy Chemistry.

[6]  Xingxing yang,et al.  In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances , 2022, Journal of Energy Chemistry.

[7]  Xunhui Xiong,et al.  Red@Black phosphorus core–shell heterostructure with superior air stability for high-rate and durable sodium-ion battery , 2022, Materials Today.

[8]  M. Freitas,et al.  Review: Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications , 2022, Journal of Energy Chemistry.

[9]  W. Peukert,et al.  Emerging Organic Surface Chemistry for Si Anodes in Lithium‐Ion Batteries: Advances, Prospects, and Beyond , 2022, Advanced Energy Materials.

[10]  A. Nwanya,et al.  Anode materials for lithium-ion batteries: A review , 2022, Applied Surface Science Advances.

[11]  S. K. Tripathi,et al.  Metal‐organic frameworks and their derivatives as anode material in lithium‐ion batteries: Recent advances towards novel configurations , 2022, International Journal of Energy Research.

[12]  S. Kim,et al.  Large-scale synthesis of graphene and other 2D materials towards industrialization , 2022, Nature Communications.

[13]  Lina Zhao,et al.  Advanced flexible electrode materials and structural designs for sodium ion batteries , 2022, Journal of Energy Chemistry.

[14]  Hong Yuan,et al.  Nanotube-based heterostructures for electrochemistry: A mini-review on lithium storage, hydrogen evolution and beyond , 2022, Journal of Energy Chemistry.

[15]  Yong Wang,et al.  Low‐Temperature Synthesis of Amorphous Silicon and Its Ball‐in‐Ball Hollow Nanospheres as High‐Performance Anodes for Sodium‐Ion Batteries , 2022, Advanced Materials Interfaces.

[16]  Gao Liu,et al.  Investigation of SiOx anode fading mechanism with limited capacity cycling , 2022, APL Materials.

[17]  M. Zhang,et al.  Monoclinic Cu3(OH)2V2O7·2H2O nanobelts/reduced graphene oxide: A novel high-capacity and long-life composite for potassium-ion battery anodes , 2022 .

[18]  Haoshen Zhou,et al.  Status and challenges facing representative anode materials for rechargeable lithium batteries , 2022 .

[19]  W. Yoon,et al.  Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium- and Sodium-Ion Batteries , 2021, Journal of Electrochemical Science and Technology.

[20]  Wanich Suksatan,et al.  Nano and Battery Anode: A Review , 2021, Nanoscale Research Letters.

[21]  Tongxiang Liang,et al.  Graphene foam as a stable anode material in lithium‐ion batteries , 2021, International Journal of Energy Research.

[22]  Y. Kang,et al.  Metal‐organic frameworks derived FeSe2@C nanorods interconnected by N‐doped graphene nanosheets as advanced anode materials for Na‐ion batteries , 2021, International Journal of Energy Research.

[23]  X. Rui,et al.  VS4/carbon nanotube hybrid: A high-rate anode for sodium-ion battery , 2021, Journal of Power Sources.

[24]  T. Le,et al.  Effects of Ni-loading contents on dehydrogenation kinetics and reversibility of Mg2FeH6 , 2021 .

[25]  Liquan Chen,et al.  Progress in thermal stability of all‐solid‐state‐Li‐ion‐batteries , 2021, InfoMat.

[26]  J. Shapter,et al.  Recent progress of advanced anode materials of lithium-ion batteries , 2021 .

[27]  Avtar Singh,et al.  Strain gradient enhanced chemo-mechanical modeling of fracture in cathode materials for lithium-ion batteries , 2021 .

[28]  A. Jain,et al.  Enhanced performance of MgH2 composite electrode using glass-ceramic electrolytes for all-solid-state Li-ion batteries , 2021 .

[29]  H. Pan,et al.  Recent Development of Lithium Borohydride‐Based Materials for Hydrogen Storage , 2021, Advanced Energy and Sustainability Research.

[30]  Mao-wen Xu,et al.  2D MXene Materials for Sodium Ion Batteries: A review on Energy Storage , 2021 .

[31]  Feng Wu,et al.  Recent progress and perspectives on silicon anode: Synthesis and prelithiation for LIBs energy storage , 2021 .

[32]  Xuebin Yu,et al.  Magnesium hydride nanoparticles anchored on MXene sheets as high capacity anode for lithium-ion batteries , 2021 .

[33]  Chenghua Sun,et al.  Graphene oxide: An emerging electromaterial for energy storage and conversion , 2021, Journal of Energy Chemistry.

[34]  Xiaoyuan Yu,et al.  Hierarchically porous SiOx/C and carbon materials from one biomass waste precursor toward high-performance lithium/sodium storage , 2021 .

[35]  Li-zhen Fan,et al.  Research progress on construction and energy storage performance of MXene heterostructures , 2021 .

[36]  F. Ran,et al.  Design Strategies of 3D Carbon‐Based Electrodes for Charge/Ion Transport in Lithium Ion Battery and Sodium Ion Battery , 2021, Advanced Functional Materials.

[37]  Z. Zhang,et al.  Polymer-Derived Ceramic Nanoparticle/Edge-Functionalized Graphene Oxide Composites for Lithium-Ion Storage. , 2021, ACS Applied Materials and Interfaces.

[38]  R. Klingeler,et al.  Hollow carbon spheres loaded with uniform dispersion of copper oxide nanoparticles for anode in lithium- ion batteries , 2021 .

[39]  Dongwook Han,et al.  Advanced metal–organic frameworks for aqueous sodium-ion rechargeable batteries , 2021 .

[40]  Cheng Lu,et al.  Pressure-Driven Structural Phase Transitions and Superconductivity of Ternary Hydride MgVH6 , 2021 .

[41]  A. Ilnicka,et al.  N-doped graphene foam obtained by microwave-assisted exfoliation of graphite , 2021, Scientific Reports.

[42]  S. Mathur,et al.  New insights into carbon-based and MXene anodes for Na and K-ion storage: A review , 2021 .

[43]  Luchao Yue,et al.  Rational design of carbon materials as anodes for potassium-ion batteries , 2021 .

[44]  Ting Lu,et al.  Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage. , 2020, Journal of colloid and interface science.

[45]  Ying Bai,et al.  Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges , 2020 .

[46]  Y. Tseng,et al.  γ-MgH2 induced by high pressure for low temperature dehydrogenation , 2020 .

[47]  Dianzeng Jia,et al.  Coaxial spinning fabricated high nitrogen-doped porous carbon walnut anchored on carbon fibers as anodic material with boosted lithium storage performance. , 2020, Journal of colloid and interface science.

[48]  A. Jain,et al.  High capacity MgH2 composite electrodes for all-solid-state Li-ion battery operating at ambient temperature , 2020 .

[49]  Feixiang Wu,et al.  Lithium metal anodes: Present and future , 2020, Journal of Energy Chemistry.

[50]  Dan Li,et al.  Construction of CoP@C embedded into N/S-co-doped porous carbon sheets for superior lithium and sodium storage. , 2020, Journal of colloid and interface science.

[51]  Biasetti Andrés T,et al.  Differences in the heterogeneous nature of hydriding/dehydriding kinetics of MgH - TiH nanocomposites , 2020 .

[52]  B. Inceesungvorn,et al.  Pressure-induced structural stability of alkali trihydrides and H2-desorption occurrence: Ab initio study for hydrogen storage improvement , 2020 .

[53]  A. Dixit,et al.  A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene , 2020, Carbon Letters.

[54]  K. Kang,et al.  Solvated Ion Intercalation in Graphite: Sodium and Beyond , 2020, Frontiers in Chemistry.

[55]  Yuanjun Liu,et al.  Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery , 2020, Frontiers in Energy.

[56]  L. Mai,et al.  Three dimensional porous frameworks for lithium dendrite suppression , 2020 .

[57]  Haodong Shi,et al.  Recent Advances and Promise of MXene‐Based Nanostructures for High‐Performance Metal Ion Batteries , 2020, Advanced Functional Materials.

[58]  H. Ez‐zahraouy,et al.  Improving desorption temperature and kinetic properties in MgH2 by vacancy defects: DFT study , 2020 .

[59]  Xitian Zhang,et al.  A safe etching route to synthesize highly crystalline Nb2CTx MXene for high performance asymmetric supercapacitor applications , 2020 .

[60]  Jason A. Weeks,et al.  Beyond Doping and Coating: Prospective Strategies for Stable High-Capacity Layered Ni-Rich Cathodes , 2020 .

[61]  V. Nicolosi,et al.  0D-1D Hybrid Silicon Nanocomposite as Lithium-Ion Batteries Anodes , 2020, Nanomaterials.

[62]  K. C. Wasalathilake,et al.  Recent advances in graphene based materials as anode materials in sodium-ion batteries , 2020, Journal of Energy Chemistry.

[63]  A. Agarwal,et al.  A review on MXene for energy storage application: effect of interlayer distance , 2020, Materials Research Express.

[64]  I. Kuřitka,et al.  Microwave-assisted synthesis of platelet-like cobalt metal-organic framework, its transformation to porous layered cobalt-carbon nanocomposite discs and their utilization as anode materials in sodium-ion batteries , 2020, Journal of Energy Storage.

[65]  He Xinping,et al.  A new magnesium hydride route to synthesize morphology-controlled Si/rGO nanocomposite towards high-performance lithium storage , 2020 .

[66]  John A. Lewis,et al.  Understanding Transformations in Battery Materials Using in Situ and Operando Experiments: Progress and Outlook , 2020 .

[67]  J. Xu,et al.  Rambutan-pitaya-like structured TiO2@Co-CNT-NC nanocomposite as high-performance lithium ion battery anodes , 2019 .

[68]  D. Noh,et al.  Abnormal lattice behavior of MgH2 in isotope labeled LiBD4-MgH2 composites at the melting of LiBD4 , 2019, Journal of Alloys and Compounds.

[69]  Changyu Shen,et al.  Recent Progress on the Alloy-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries. , 2019, Small.

[70]  Yueping Fang,et al.  Rational Design and Controllable Synthesis of Multi-Shelled Fe2O3@SnO2@C Nanotubes as Advanced Anode Material for Lithium/Sodium Ion Batteries. , 2019, ACS applied materials & interfaces.

[71]  Qing Zhou,et al.  Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2 (B) , 2019, Applied Surface Science.

[72]  Yunhua Xu,et al.  Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes , 2019, Nano Energy.

[73]  M. N. Hedhili,et al.  MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery , 2019, Nano Energy.

[74]  Wan-Jing Yu,et al.  Metal-organic framework derived flower-like FeS/C composite as an anode material in lithium-ion and sodium-ion batteries , 2019, Journal of Alloys and Compounds.

[75]  N. Iqbal,et al.  Electro catalytic study of NiO-MOF/rGO composites for methanol oxidation reaction , 2019, Electrochimica Acta.

[76]  Xiao‐Qing Yang,et al.  Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research , 2019, Advanced materials.

[77]  Haijiao Zhang,et al.  Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes , 2019, Journal of Energy Chemistry.

[78]  C. Shi,et al.  Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced prussian blue for high performance Na-ion battery cathode , 2019, Nano Energy.

[79]  S. Sagadevan,et al.  Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries , 2019, Materials.

[80]  Zhenhua Wang,et al.  Heteroatom‐Doped Mesoporous Hollow Carbon Spheres for Fast Sodium Storage with an Ultralong Cycle Life , 2019, Advanced Energy Materials.

[81]  Jiaguo Yu,et al.  Hollow Carbon Spheres and Their Hybrid Nanomaterials in Electrochemical Energy Storage , 2019, Advanced Energy Materials.

[82]  Xiaobo Ji,et al.  Anatase inverse opal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage , 2019, Electrochimica Acta.

[83]  Chang E. Ren,et al.  Scalable Manufacturing of Large and Flexible Sheets of MXene/Graphene Heterostructures , 2019, Advanced Materials Technologies.

[84]  Jian Yang,et al.  Preparation of Porous TiO2 from an Iso-Polyoxotitanate Cluster for Rechargeable Sodium-Ion Batteries with High Performance , 2019, The Journal of Physical Chemistry C.

[85]  L. Vlček,et al.  Influences from solvents on charge storage in titanium carbide MXenes , 2019, Nature Energy.

[86]  X. Lou,et al.  Synthesis of Cobalt Sulfide Multi-shelled Nanoboxes with Precisely Controlled Two to Five Shells for Sodium-Ion Batteries. , 2019, Angewandte Chemie.

[87]  Evan K. Wujcik,et al.  Polyborosilazane derived ceramics - Nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries , 2019, Electrochimica Acta.

[88]  Dong-Hwang Chen,et al.  Electrochemical fabrication of nickel phosphide/reduced graphene oxide/nickel oxide composite on nickel foam as a high performance electrode for supercapacitors , 2019, Nanotechnology.

[89]  Wenwen Zhan,et al.  Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks , 2019, Nano-micro letters.

[90]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[91]  Xuebin Yu,et al.  Recent progress in phosphorus based anode materials for lithium/sodium ion batteries , 2019, Energy Storage Materials.

[92]  Yue Sun,et al.  Phosphorus‐doped Isotype g‐C3N4/g‐C3N4: An Efficient Charge Transfer System for Photoelectrochemical Water Oxidation , 2019, ChemCatChem.

[93]  Ruqiang Zou,et al.  Metal-Organic Frameworks for Batteries , 2018, Joule.

[94]  F. Du,et al.  Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes , 2018, Electrochemistry Communications.

[95]  Dingcai Wu,et al.  Clay minerals derived nanostructured silicon with various morphology: Controlled synthesis, structural evolution, and enhanced lithium storage properties , 2018, Journal of Power Sources.

[96]  Dalin Sun,et al.  Metal hydrides for lithium-ion battery application: A review , 2018, Journal of Alloys and Compounds.

[97]  Jing Ren,et al.  Self-Adaptive Electrode with SWCNT Bundles as Elastic Substrate for High-Rate and Long-Cycle-Life Lithium/Sodium Ion Batteries. , 2018, Small.

[98]  Yaolin Xu,et al.  TiF3 catalyzed MgH2 as a Li/Na ion battery anode , 2018, International Journal of Hydrogen Energy.

[99]  Ying Huang,et al.  Activating Aromatic Rings as Na-Ion Storage Sites to Achieve High Capacity , 2018, Chem.

[100]  R. Holze,et al.  Electrocatalysis at Electrodes for VanadiumRedox Flow Batteries , 2018, Batteries.

[101]  Xiaoyi Zhu,et al.  Facile and Scalable Approach To Fabricate Granadilla-like Porous-Structured Silicon-Based Anode for Lithium Ion Batteries. , 2018, ACS applied materials & interfaces.

[102]  Lipeng Zhang,et al.  CNTs–C@TiO2 composites with 3D networks as anode material for lithium/sodium ion batteries , 2018, Journal of Materials Science.

[103]  K. Roh,et al.  Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode , 2018, Journal of Power Sources.

[104]  Jimeng Sun,et al.  SUSTain , 2018, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

[105]  Yi Cui,et al.  Materials for lithium-ion battery safety , 2018, Science Advances.

[106]  M. Jurczyk,et al.  Hydrogen storage and electrochemical properties of mechanically alloyed La1.5-xGdxMg0.5Ni7 (0 ≤ x ≤ 1.5) , 2018 .

[107]  Dan Wang,et al.  Facile Synthesis of Crumpled Nitrogen‐Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries , 2018 .

[108]  Mingdeng Wei,et al.  Preparation of a Si/SiO2 -Ordered-Mesoporous-Carbon Nanocomposite as an Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries. , 2018, Chemistry.

[109]  Baoping Zhang,et al.  Magnesium Hydride Nanoparticles Self-Assembled on Graphene as Anode Material for High-Performance Lithium-Ion Batteries. , 2018, ACS nano.

[110]  M. Maroto-Valer,et al.  Solar carbon fuel via photoelectrochemistry , 2018, Catalysis Today.

[111]  S. Maiti,et al.  Bi-metal organic framework derived nickel manganese oxide spinel for lithium-ion battery anode , 2018 .

[112]  Kun Feng,et al.  Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. , 2018, Small.

[113]  M. Winter,et al.  The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach. , 2018, Accounts of chemical research.

[114]  Huaiguo Xue,et al.  Hierarchically Nanostructured Transition Metal Oxides for Lithium‐Ion Batteries , 2018, Advanced science.

[115]  Prasant Kumar Nayak,et al.  From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. , 2018, Angewandte Chemie.

[116]  R. Mahmud,et al.  Fabrication, Characterization and Cytotoxicity of Spherical-Shaped Conjugated Gold-Cockle Shell Derived Calcium Carbonate Nanoparticles for Biomedical Applications , 2018, Nanoscale Research Letters.

[117]  Dapeng Zhang,et al.  Research progress on silicon/carbon composite anode materials for lithium-ion battery , 2017, Journal of Energy Chemistry.

[118]  Kwo-Hsiung Young,et al.  Performance Comparison of Rechargeable Batteries for Stationary Applications (Ni/MH vs. Ni–Cd and VRLA) , 2017 .

[119]  F. Perera Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist , 2017, International journal of environmental research and public health.

[120]  Xiaobo Ji,et al.  Carbon Anode Materials for Advanced Sodium‐Ion Batteries , 2017 .

[121]  Yang Hou,et al.  Tunable Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[122]  Jun Chen,et al.  Phosphorus‐Based Materials as the Anode for Sodium‐Ion Batteries , 2017 .

[123]  B. K. Gupta,et al.  Development and Demonstration of Air Stable rGO‐EC@AB5 Type Hydrogenated Intermetallic Hybrid for Hydrogen Fuelled Devices , 2017 .

[124]  Xiaobing Lou,et al.  Remarkable Improvement in the Lithium Storage Property of Co2(OH)2BDC MOF by Covalent Stitching to Graphene and the Redox Chemistry Boosted by Delocalized Electron Spins , 2017 .

[125]  X. Bao,et al.  Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries , 2017 .

[126]  N. Berti,et al.  Enhanced reversibility of the electrochemical Li conversion reaction with MgH2–TiH2 nanocomposites , 2017 .

[127]  H. Andersen,et al.  Morphology effects in MgH2 anode for lithium ion batteries , 2017 .

[128]  Guoqing Zhang,et al.  Fabrication of Fe3 O4 Dots Embedded in 3D Honeycomb-Like Carbon Based on Metallo-Organic Molecule with Superior Lithium Storage Performance. , 2017, Small.

[129]  L. Dai,et al.  Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors , 2017 .

[130]  Xiulin Fan,et al.  Superior reversible tin phosphide-carbon spheres for sodium ion battery anode , 2017 .

[131]  N. Berti,et al.  An all-solid-state metal hydride – Sulfur lithium-ion battery , 2017 .

[132]  R. Hu,et al.  Electrochemical performances of MgH 2 and MgH 2 -C films for lithium ion battery anode , 2017 .

[133]  F. Du,et al.  Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene , 2017 .

[134]  Xianguang Miao,et al.  ZnS-Sb2S3@C Core-Double Shell Polyhedron Structure Derived from Metal-Organic Framework as Anodes for High Performance Sodium Ion Batteries. , 2017, ACS nano.

[135]  Feng Wu,et al.  A three-dimensional network structure Si/C anode for Li-ion batteries , 2017, Journal of Materials Science.

[136]  N. Klyui,et al.  Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method , 2017 .

[137]  Yan Yu,et al.  Dual‐Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium‐Ion Batteries , 2017, Advanced materials.

[138]  Zhichuan J. Xu,et al.  A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes , 2017 .

[139]  B. Dunn,et al.  Porous One‐Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage , 2017, Advanced materials.

[140]  Weiqun Shi,et al.  Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. , 2017, ACS nano.

[141]  N. Sahoo,et al.  Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene , 2017 .

[142]  Zhonghui Cui,et al.  Monodispersed Carbon-Coated Cubic NiP2 Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage. , 2017, ACS nano.

[143]  Xiaogang Li,et al.  Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage , 2017 .

[144]  Guofu Zhou,et al.  Fabrication and photoelectrochemical properties of silicon nanowires/g-C3N4 core/shell arrays , 2017 .

[145]  Liqiang Xu,et al.  Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries. , 2017, ACS applied materials & interfaces.

[146]  Ya‐Xia Yin,et al.  Watermelon‐Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium‐Ion Battery Anodes , 2017 .

[147]  Hsing-Yu Tuan,et al.  Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes. , 2017, Nano letters.

[148]  A. Bhatnagar,et al.  Experimental and first principle studies on hydrogen desorption behavior of graphene nanofibre catalyzed MgH2 , 2017 .

[149]  T. Ichikawa,et al.  Bulk-Type All-Solid-State Lithium-Ion Batteries: Remarkable Performances of a Carbon Nanofiber-Supported MgH2 Composite Electrode. , 2017, ACS applied materials & interfaces.

[150]  Yejing Dai,et al.  Preparation and electrochemical performance of polymer-derived SiBCN-graphene composite as anode material for lithium ion batteries , 2017 .

[151]  Christina M. Rost,et al.  Radial growth of multi-walled carbon nanotubes in aligned sheets through cyclic carbon deposition and graphitization , 2017 .

[152]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[153]  Chang E. Ren,et al.  2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage , 2016 .

[154]  Daotan Liu,et al.  Dual Core-Shell Structured Si@SiOx@C Nanocomposite Synthesized via a One-Step Pyrolysis Method as a Highly Stable Anode Material for Lithium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[155]  S. Pannala,et al.  The potential of silicon anode based lithium ion batteries , 2016 .

[156]  Shuling Liu,et al.  Cu3P/RGO Nanocomposite as a New Anode for Lithium-Ion Batteries , 2016, Scientific Reports.

[157]  B. Hwang,et al.  Experimental Study on Sodiation of Amorphous Silicon for Use as Sodium-Ion Battery Anode , 2016 .

[158]  Zaiping Guo,et al.  General Synthesis of Transition Metal Oxide Ultrafine Nanoparticles Embedded in Hierarchically Porous Carbon Nanofibers as Advanced Electrodes for Lithium Storage , 2016 .

[159]  Pierre-Louis Taberna,et al.  Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte , 2016 .

[160]  Wenquan Lu A New Strategy to Mitigate the Initial Capacity Loss of Lithium Ion Batteries , 2016 .

[161]  Yaolin Xu,et al.  Reversible Na‐Ion Uptake in Si Nanoparticles , 2016 .

[162]  M. Chi,et al.  Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition , 2016 .

[163]  F. Ding,et al.  Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface , 2016, Science Advances.

[164]  J. Gu,et al.  Synthesis of nanosilicon@nonstoichiometric silicon oxide from bulk silicon dioxide and its lithium storage properties , 2016 .

[165]  G. Cao,et al.  Understanding electrochemical potentials of cathode materials in rechargeable batteries , 2016 .

[166]  Z. Pan,et al.  Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility , 2016, Nature Communications.

[167]  Quan-hong Yang,et al.  Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges , 2016 .

[168]  Jae Hyun Kim,et al.  Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries , 2015 .

[169]  Jun Lu,et al.  Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries. , 2015, ChemSusChem.

[170]  P. Qi,et al.  Metal-Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries. , 2015, ACS applied materials & interfaces.

[171]  Kiyotaka Goshome,et al.  Anode properties of Al2O3-added MgH2 for all-solid-state lithium-ion batteries , 2015, Journal of Solid State Electrochemistry.

[172]  Hansu Kim,et al.  Dual-Size Silicon Nanocrystal-Embedded SiO(x) Nanocomposite as a High-Capacity Lithium Storage Material. , 2015, ACS nano.

[173]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[174]  Yury Gogotsi,et al.  Amine‐Assisted Delamination of Nb2C MXene for Li‐Ion Energy Storage Devices , 2015, Advanced materials.

[175]  Thomas Vogt,et al.  Comparative life cycle assessment of battery storage systems for stationary applications. , 2015, Environmental science & technology.

[176]  Y. Li,et al.  Ionic liquid electrodeposition of germanium/carbon nanotube composite anode material for lithium ion batteries , 2015 .

[177]  Jingze Li,et al.  Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries , 2015, Journal of Materials Science.

[178]  Liquan Chen,et al.  Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. , 2015, Journal of the American Chemical Society.

[179]  Tasbirul Islam,et al.  Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh , 2014 .

[180]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[181]  M. A. Kulandainathan,et al.  Diamondoid‐Structured Cu–Dicarboxylate‐based Metal–Organic Frameworks as High‐Capacity Anodes for Lithium‐Ion Storage , 2014 .

[182]  J. Maria,et al.  Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets , 2014 .

[183]  Lianmao Peng,et al.  Floating growth of large-scale freestanding TiO2 nanorod films at the gas-liquid interface for additive-free Li-ion battery applications. , 2014, ACS applied materials & interfaces.

[184]  Ning Li,et al.  Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries , 2014 .

[185]  A. Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-micro letters.

[186]  Xiaodong Chen,et al.  Mechanical Force‐Driven Growth of Elongated Bending TiO2‐based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries , 2014, Advanced materials.

[187]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[188]  J. Yin,et al.  Highly porous Fe3O4–Fe nanowires grown on C/TiC nanofiber arrays as the high performance anode of lithium-ion batteries , 2014 .

[189]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[190]  Oliver G. Schmidt,et al.  Hierarchically Designed SiOx/SiOy Bilayer Nanomembranes as Stable Anodes for Lithium Ion Batteries , 2014, Advanced materials.

[191]  B. Scrosati,et al.  An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. , 2014, Nano letters.

[192]  Cao Cuong Nguyen,et al.  Siloxane-capped amorphous nano-SiOx/graphite with improved dispersion ability and battery anode performance , 2014 .

[193]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[194]  Ning Li,et al.  Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[195]  Fredrik J. Lindgren,et al.  Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide , 2014 .

[196]  Yury Gogotsi,et al.  New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[197]  K. Amine,et al.  Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple , 2013 .

[198]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[199]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[200]  J. Jumas,et al.  Reactivity of complex hydrides Mg2FeH6, Mg2CoH5 and Mg2NiH4 with lithium ion: Far from equilibrium electrochemically driven conversion reactions , 2013 .

[201]  M. Winter,et al.  Cu3P Binary Phosphide: Synthesis via a Wet Mechanochemical Method and Electrochemical Behavior as Negative Electrode Material for Lithium‐Ion Batteries , 2013 .

[202]  Xinping Ai,et al.  High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion BatterieslSUPg†l/SUPg , 2013 .

[203]  P. Reale,et al.  Magnesium hydride as a high capacity negative electrode for lithium ion batteries , 2012 .

[204]  Jiulin Wang,et al.  Nanosheet‐Constructed Porous TiO2–B for Advanced Lithium Ion Batteries , 2012, Advanced materials.

[205]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[206]  M. Ge,et al.  Porous doped silicon nanowires for lithium ion battery anode with long cycle life. , 2012, Nano letters.

[207]  Yafei Zhang,et al.  Continuous and low-cost synthesis of high-quality multi-walled carbon nanotubes by arc discharge in air , 2012 .

[208]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[209]  Meilin Liu,et al.  Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives , 2011 .

[210]  Jie Wang,et al.  Electrochemical properties of SnO2/carbon composite materials as anode material for lithium-ion batteries , 2011 .

[211]  Feng Li,et al.  Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. , 2011, ACS nano.

[212]  Hyun Joon Shin,et al.  Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. , 2011, Nano letters.

[213]  X. Lou,et al.  Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage , 2011 .

[214]  R. Raj,et al.  Cyclic stability and C-rate performance of amorphous silicon and carbon based anodes for electrochemical storage of lithium , 2011 .

[215]  P. Balaya,et al.  Lithium storage in a metal organic framework with diamondoid topology – a case study on metal formates , 2010 .

[216]  Ping He,et al.  Nano active materials for lithium-ion batteries. , 2010, Nanoscale.

[217]  Y. Feng,et al.  Electrochemical properties of heat-treated polymer-derived SiCN anode for lithium ion batteries , 2010 .

[218]  R. Raj,et al.  Thermodynamic measurements pertaining to the hysteretic intercalation of lithium in polymer-derived silicon oxycarbide , 2010 .

[219]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[220]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[221]  Yi Cui,et al.  Solution-grown silicon nanowires for lithium-ion battery anodes. , 2010, ACS nano.

[222]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[223]  Cheol‐Min Park,et al.  Topotactic Li Insertion/Extraction in Hexagonal Vanadium Monophosphide , 2009 .

[224]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[225]  J. Tarascon,et al.  2LiH + M (M = Mg, Ti): New concept of negative electrode for rechargeable lithium-ion batteries , 2009 .

[226]  Andrew J. Medford,et al.  Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization , 2009 .

[227]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[228]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[229]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[230]  S. Iijima,et al.  In-situ observation of structural change in MWCNTs under high-pressure H2 gas atmosphere , 2008 .

[231]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[232]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[233]  Jae‐Hun Kim,et al.  Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries , 2007 .

[234]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[235]  Chunjoong Kim,et al.  Novel SnS2-nanosheet anodes for lithium-ion batteries , 2007 .

[236]  Jie Gao,et al.  Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries , 2007 .

[237]  P. Balaya,et al.  Nano-ionics in the context of lithium batteries , 2006 .

[238]  F. Favier,et al.  Cu3P as anode material for lithium ion battery: powder morphology and electrochemical performances , 2004 .

[239]  F. Favier,et al.  Air stable copper phosphide (Cu3P): a possible negative electrode material for lithium batteries , 2004 .

[240]  J. Garche,et al.  Advanced battery systems—the end of the lead–acid battery? , 2001 .

[241]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[242]  Thomas Nussbaumer,et al.  Aharonov–Bohm oscillations in carbon nanotubes , 1999, Nature.

[243]  K. Brandt,et al.  Historical development of secondary lithium batteries , 1994 .

[244]  W. A. Adams,et al.  Comparison of rechargeable lithium and nickel/cadmium battery cells for implantable circulatory support devices. , 1994, Artificial organs.

[245]  B. Reichman,et al.  Rechargeable Zn ‐ MnO2 Alkaline Batteries , 1991 .

[246]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[247]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .