Molecular simulations of colloidal liquids

Abstract The molecular basis of the Langevin equation is discussed starting from a molecular description of the host liquid. The application of the Langevin equation in the large particle limit is discussed using the Ermak ‘hydrodynamics-free’ algorithm. Illustrations of the behaviour of this algorithm are made for structural, diffusional and frequency dependent viscosity.

[1]  F. Lantelme Mass and size effect in condensed fluids Rare gases and ionic liquids , 1982 .

[2]  Chaikin,et al.  Diffusion, dispersion, and settling of hard spheres. , 1992, Physical review letters.

[3]  P. Pusey,et al.  Dynamics of Suspended Colloidal Spheres , 1991 .

[4]  W. Hess,et al.  Generalized hydrodynamics of systems of Brownian particles , 1983 .

[5]  J. Morales,et al.  The effect of dimensionality on Brownian motion , 1990 .

[6]  L. Verlet,et al.  Computer "Experiments" on Classical Fluids. IV. Transport Properties and Time-Correlation Functions of the Lennard-Jones Liquid near Its Triple Point , 1973 .

[7]  de Kruif CG,et al.  Linear viscoelastic behavior of dense hard-sphere dispersions. , 1989, Physical review. A, General physics.

[8]  B. Brooks,et al.  An analysis of the accuracy of Langevin and molecular dynamics algorithms , 1988 .

[9]  G. Maret,et al.  Long‐time self‐diffusion of spherical colloidal particles measured with fluorescence recovery after photobleaching , 1992 .

[10]  B. Alder,et al.  Studies in molecular dynamics. XIV. Mass and size dependence of the binary diffusion coefficient , 1974 .

[11]  B. Berne,et al.  Onset of Brownian Motion in a One‐Dimensional Fluid , 1972 .

[12]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[13]  R. Zwanzig,et al.  High‐Frequency Elastic Moduli of Simple Fluids , 1965 .

[14]  H. Berendsen,et al.  STOCHASTIC DYNAMICS FOR MOLECULES WITH CONSTRAINTS BROWNIAN DYNAMICS OF NORMAL-ALKANES , 1981 .

[15]  R. Ottewill Colloid stability and instability: order disorder , 1989 .

[16]  J. W. Goodwin,et al.  Properties of concentrated colloidal dispersions , 1991 .

[17]  R. J. Bearman,et al.  Mass dependence of the self diffusion coefficients in two equimolar binary liquid Lennard-Jones systems determined through molecular dynamics simulation , 1981 .

[18]  Eric Dickinson,et al.  Molecular dynamics simulation of hard-disc mixtures: Self-diffusion coefficients , 1977 .

[19]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[20]  D. Heyes Rheology of molecular liquids and concentrated suspensions by microscopic dynamical simulations , 1988 .

[21]  Irwin Oppenheim,et al.  Molecular theory of Brownian motion , 1970 .

[22]  Hartmut Löwen,et al.  Long-time self-diffusion coefficient in colloidal suspensions: theory versus simulation , 1993 .

[23]  R. Watts,et al.  The Friction Coefficient Formalism in the Statistical Mechanics of Transport Processes , 1972 .

[24]  P. Pusey,et al.  Diffusion in concentrated hard sphere dispersions: Effects of two and three particle mobilities , 1983 .

[25]  D. Grant,et al.  Generalized Langevin equations for molecular dynamics in solution , 1991 .

[26]  C. Hoheisel,et al.  Determination of the friction coefficient via the force autocorrelation function. A molecular dynamics investigation for a dense Lennard-Jones fluid , 1987 .

[27]  J. Lebowitz,et al.  Microscopic theory of Brownian motion in an oscillating field; Connection with macroscopic theory , 1965 .

[28]  P. Español,et al.  Force autocorrelation function in Brownian motion theory , 1993 .

[29]  J. Brady The rheological behavior of concentrated colloidal dispersions , 1993 .

[30]  J. Brey,et al.  Computer studies of Brownian motion in a Lennard‐Jones fluid: The Stokes law , 1982 .

[31]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[32]  D. Ermak A computer simulation of charged particles in solution. I. Technique and equilibrium properties , 1975 .

[33]  B. Jönsson,et al.  Brownian dynamics simulation of interacting particles , 1985 .

[34]  S. Toxvaerd Mass dependence of the self diffusion in a liquid , 1985 .

[35]  A. Martin-Löf,et al.  Fluctuating hydrodynamics and Brownian motion , 1973 .

[36]  J. Kirkwood The Statistical Mechanical Theory of Transport Processes I. General Theory , 1946 .

[37]  Jan K. G. Dhont,et al.  On the calculation of the self-diffusion coefficient of interacting Brownian particles , 1984 .

[38]  T. J. Murphy,et al.  Brownian Motion of N Interacting Particles. I. Extension of the Einstein Diffusion Relation to the N‐Particle Case , 1972 .

[39]  Hydrodynamic interactions in suspensions with periodic boundary conditions , 1989 .

[40]  R. Zwanzig Elementary Derivation of Time‐Correlation Formulas for Transport Coefficients , 1964 .