Crosstalk in NF-κB signaling pathways

[1]  H. Erdjument-Bromage,et al.  TLR signaling augments macrophage bactericidal activity through mitochondrial ROS , 2011, Nature.

[2]  A. Ashkenazi,et al.  NEMO and RIP1 Control Cell Fate in Response to Extensive DNA Damage via TNF-α Feedforward Signaling , 2011, Cell.

[3]  B. Maček,et al.  SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis , 2011, Nature.

[4]  Y. Saeki,et al.  SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex , 2011, Nature.

[5]  Anthony W. Purcell,et al.  Linear ubiquitination prevents inflammation and regulates immune signalling , 2011, Nature.

[6]  A. Hoffmann,et al.  The Specificity of Innate Immune Responses Is Enforced by Repression of Interferon Response Elements by NF-κB p50 , 2011, Science Signaling.

[7]  P. Cohen,et al.  Novel cross-talk within the IKK family controls innate immunity. , 2011, The Biochemical journal.

[8]  J. Minna,et al.  Cells Lacking IKKα Show Nuclear Cyclin D1 Overexpression and a Neoplastic Phenotype: Role of IKKα as a Tumor Suppressor , 2011, Molecular Cancer Research.

[9]  W. Hahn,et al.  Emerging roles for the non-canonical IKKs in cancer , 2011, Oncogene.

[10]  A. Eliopoulos,et al.  The death domain kinase RIP1 links the immunoregulatory CD40 receptor to apoptotic signaling in carcinomas , 2011, The Journal of cell biology.

[11]  S. Ghosh,et al.  NF-κB in immunobiology , 2011, Cell Research.

[12]  S. Ghosh,et al.  NF-κB, inflammation, and metabolic disease. , 2011, Cell metabolism.

[13]  K. Blackwell,et al.  TRAF2 phosphorylation promotes NF-κB–dependent gene expression and inhibits oxidative stress-induced cell death , 2011, Molecular biology of the cell.

[14]  Jing Wang,et al.  MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-κB signaling , 2010, The Journal of experimental medicine.

[15]  F. Agou,et al.  IκB kinase overcomes PI3K/Akt and ERK/MAPK to control FOXO3a activity in acute myeloid leukemia. , 2010, Blood.

[16]  F. Chan,et al.  The molecular regulation of programmed necrotic cell injury. , 2010, Trends in biochemical sciences.

[17]  T. P. Rao,et al.  An updated overview on Wnt signaling pathways: a prelude for more. , 2010, Circulation research.

[18]  Thomas J. Fuchs,et al.  TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. , 2010, Cancer cell.

[19]  Zhijian J. Chen,et al.  Reconstitution of the RIG-I Pathway Reveals a Signaling Role of Unanchored Polyubiquitin Chains in Innate Immunity , 2010, Cell.

[20]  T. Vanden Berghe,et al.  The Role of the Kinases RIP1 and RIP3 in TNF-Induced Necrosis , 2010, Science Signaling.

[21]  Jingxia Li,et al.  A novel role of IKKalpha in the mediation of UVB-induced G0/G1 cell cycle arrest response by suppressing Cyclin D1 expression. , 2010, Biochimica et biophysica acta.

[22]  Jingxia Li,et al.  A novel role of IKK α in the mediation of UVB-induced G 0 / G 1 cell cycle arrest response by suppressing Cyclin D 1 expression , 2010 .

[23]  Rony Seger,et al.  The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. , 2010, Methods in molecular biology.

[24]  K. Fitzgerald,et al.  IKKalpha negatively regulates IRF-5 function in a MyD88-TRAF6 pathway. , 2010, Cellular signalling.

[25]  F. Agou,et al.  B kinase overcomes PI 3 K / Akt and ERK / MAPK to control FOXO 3 a activity in acute myeloid leukemia , 2010 .

[26]  G. Stark,et al.  Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65 , 2009, Proceedings of the National Academy of Sciences.

[27]  D. Baltimore,et al.  Regulation of NF-κB activity through lysine monomethylation of p65 , 2009, Proceedings of the National Academy of Sciences.

[28]  M. Chance,et al.  Regulation of NF κB by NSD1/FBXL11-dependent reversible lysine methylation of p65 , 2009 .

[29]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[30]  A. Chariot The NF-kappaB-independent functions of IKK subunits in immunity and cancer. , 2009, Trends in cell biology.

[31]  R. Beyaert,et al.  ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. , 2009, Biochemical pharmacology.

[32]  S. Akira,et al.  TANK is a negative regulator of Toll-like receptor signaling and critical for preventing autoimmune nephritis , 2009, Nature Immunology.

[33]  F. Chan,et al.  Phosphorylation-Driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-Induced Inflammation , 2009, Cell.

[34]  Ben B Yaspelkis,et al.  High-fat feeding increases insulin receptor and IRS-1 coimmunoprecipitation with SOCS-3, IKKalpha/beta phosphorylation and decreases PI-3 kinase activity in muscle. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[35]  V. Rangnekar,et al.  RIP1 activates PI3K-Akt via a dual mechanism involving NF-kappaB-mediated inhibition of the mTOR-S6K-IRS1 negative feedback loop and down-regulation of PTEN. , 2009, Cancer research.

[36]  N. Kelleher,et al.  Negative regulation of NF‐κB action by Set9‐mediated lysine methylation of the RelA subunit , 2009, The EMBO journal.

[37]  K. Blackwell,et al.  Phosphorylation of TRAF2 within its RING domain inhibits stress-induced cell death by promoting IKK and suppressing JNK activation. , 2009, Cancer research.

[38]  A. Yoshimura,et al.  Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein. , 2009, Immunity.

[39]  N. Tanaka,et al.  Loss of p53 enhances catalytic activity of IKKβ through O-linked β-N-acetyl glucosamine modification , 2009, Proceedings of the National Academy of Sciences.

[40]  M. Karin,et al.  Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin , 2009, Nature.

[41]  M. Dorf,et al.  PKC phosphorylation of TRAF2 mediates IKKalpha/beta recruitment and K63-linked polyubiquitination. , 2009, Molecular cell.

[42]  S. Oshima,et al.  ABIN-1 is a Ubiquitin Sensor that Restricts Cell Death and Sustains Embryonic Development , 2008, Nature.

[43]  B. Yaspelkis,et al.  High Fat Feeding Increases Insulin Receptor and IRS-1 Co-immunoprecipitation with SOCS-3, IKK α / β Phosphorylation and Decreases PI-3 Kinase Activity in Muscle , 2009 .

[44]  S. Akira,et al.  TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis , 2009 .

[45]  V. Rangnekar,et al.  RIP 1 Activates PI 3 K-Akt via a Dual Mechanism Involving NFK B – Mediated Inhibition of the mTOR-S 6 KIRS 1 Negative Feedback Loop and Down-regulation of PTEN , 2009 .

[46]  S. Oshima,et al.  ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development , 2009, Nature.

[47]  Alexei Degterev,et al.  Identification of a Molecular Signaling Network that Regulates a Cellular Necrotic Cell Death Pathway , 2008, Cell.

[48]  T. Mak,et al.  Activation of noncanonical NF-κB requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2, TRAF3 and the kinase NIK , 2008, Nature Immunology.

[49]  J. Keats,et al.  Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling , 2008, Nature Immunology.

[50]  U. Lendahl,et al.  Notch-1 associates with IKKα and regulates IKK activity in cervical cancer cells , 2008, Oncogene.

[51]  B. Ren,et al.  Role of the Histone H3 Lysine 4 Methyltransferase, SET7/9, in the Regulation of NF-κB-dependent Inflammatory Genes , 2008, Journal of Biological Chemistry.

[52]  S. Fischer,et al.  IKKalpha is required to maintain skin homeostasis and prevent skin cancer. , 2008, Cancer cell.

[53]  I. Verma,et al.  Phosphorylation of SNAP-23 by IκB Kinase 2 Regulates Mast Cell Degranulation , 2008, Cell.

[54]  M. Karin,et al.  Essential Cytoplasmic Translocation of a Cytokine Receptor–Assembled Signaling Complex , 2008, Science.

[55]  T. Vanden Berghe,et al.  Necrotic cell death and 'necrostatins': now we can control cellular explosion. , 2008, Trends in biochemical sciences.

[56]  D. Thanos,et al.  Virus Infection Induces NF-κB-Dependent Interchromosomal Associations Mediating Monoallelic IFN-β Gene Expression , 2008, Cell.

[57]  Katerina Akassoglou,et al.  NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α , 2008, Nature.

[58]  J. Ting,et al.  Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. , 2008, Genes & development.

[59]  Xiaodong Wang,et al.  TNF-α Induces Two Distinct Caspase-8 Activation Pathways , 2008, Cell.

[60]  Alexei Degterev,et al.  Identification of RIP1 kinase as a specific cellular target of necrostatins. , 2008, Nature chemical biology.

[61]  Z. Zhai,et al.  Differential regulation of IKKα-mediated activation of IRF3/7 by NIK , 2008 .

[62]  H. Tilg,et al.  Inflammatory Mechanisms in the Regulation of Insulin Resistance , 2008, Molecular medicine.

[63]  M. Karin,et al.  IKKα is a critical coregulator of a Smad4-independent TGFβ-Smad2/3 signaling pathway that controls keratinocyte differentiation , 2008, Proceedings of the National Academy of Sciences.

[64]  P. Wright,et al.  RIP1 links inflammatory and growth factor signaling pathways by regulating expression of the EGFR , 2008, Cell Death and Differentiation.

[65]  G. Courtois,et al.  Inhibition of the NF-κB survival pathway via caspase-dependent cleavage of the IKK complex scaffold protein and NF-κB essential modulator NEMO , 2008, Cell Death and Differentiation.

[66]  T. Golde,et al.  Off the beaten pathway: the complex cross talk between Notch and NF-κB , 2008, Laboratory Investigation.

[67]  M. Neuenhahn,et al.  NF-κB Is a Negative Regulator of IL-1β Secretion as Revealed by Genetic and Pharmacological Inhibition of IKKβ , 2007, Cell.

[68]  G. Hortobagyi,et al.  IKKβ Suppression of TSC1 Links Inflammation and Tumor Angiogenesis via the mTOR Pathway , 2007, Cell.

[69]  Jianjun Shen,et al.  IKKα Shields 14-3-3σ, a G2/M Cell Cycle Checkpoint Gene, from Hypermethylation, Preventing Its Silencing , 2007 .

[70]  R. Kobayashi,et al.  IκB Kinase Promotes Tumorigenesis through Inhibition of Forkhead FOXO3a , 2007, Cell.

[71]  Eric S. Lander,et al.  Integrative Genomic Approaches Identify IKBKE as a Breast Cancer Oncogene , 2007, Cell.

[72]  Qiang Sun,et al.  The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways , 2007, Nature Immunology.

[73]  M. Hinz,et al.  Striking Back at the Activator: How IκB Kinase Terminates Antigen Receptor Responses , 2007, Science's STKE.

[74]  M. Hung,et al.  Phosphorylation of CBP by IKKα Promotes Cell Growth by Switching the Binding Preference of CBP from p53 to NF-κB , 2007 .

[75]  David A. Cheresh,et al.  Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin , 2007, Nature.

[76]  W. Yeh,et al.  Ubiquitination of RIP1 Regulates an NF-κB-Independent Cell-Death Switch in TNF Signaling , 2007, Current Biology.

[77]  Rutger O. Vogel,et al.  Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. , 2007, Genes & development.

[78]  Hao Wu,et al.  Site-specific Lys-63-linked Tumor Necrosis Factor Receptor-associated Factor 6 Auto-ubiquitination Is a Critical Determinant of IκB Kinase Activation* , 2006, Journal of Biological Chemistry.

[79]  Jianjun Shen,et al.  IKKalpha shields 14-3-3sigma, a G(2)/M cell cycle checkpoint gene, from hypermethylation, preventing its silencing. , 2007, Molecular cell.

[80]  Malay Mandal,et al.  Targeting the NF-κB signaling pathway in Notch1-induced T-cell leukemia , 2007, Nature Medicine.

[81]  N. Perkins,et al.  Integrating cell-signalling pathways with NF-κB and IKK function , 2007, Nature Reviews Molecular Cell Biology.

[82]  Cun-Yu Wang,et al.  IKKα stabilizes cytosolic β-catenin by inhibiting both canonical and non-canonical degradation pathways , 2006 .

[83]  Claus Scheidereit,et al.  IκB kinase complexes: gateways to NF-κB activation and transcription , 2006, Oncogene.

[84]  G. Courtois,et al.  Mutations in the NF-κB signaling pathway: implications for human disease , 2006, Oncogene.

[85]  Michael Karin,et al.  Regulation and Function of IKK and IKK-Related Kinases , 2006, Science's STKE.

[86]  P. Ratcliffe,et al.  Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH) , 2006, Proceedings of the National Academy of Sciences.

[87]  T. Hunter,et al.  Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-kappaB activation and cell survival. , 2006, Cancer cell.

[88]  E. Pietras,et al.  Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif , 2006, The EMBO journal.

[89]  M. Tajiri,et al.  Myosin motor Myo1c and its receptor NEMO/IKK-γ promote TNF-α–induced serine307 phosphorylation of IRS-1 , 2006, The Journal of cell biology.

[90]  M. Karin Nuclear factor-κB in cancer development and progression , 2006, Nature.

[91]  T. Luedde,et al.  Dissection of the NF-κB signalling cascade in transgenic and knockout mice , 2006, Cell Death and Differentiation.

[92]  R. Webby,et al.  NFκB Negatively Regulates Interferon-induced Gene Expression and Anti-influenza Activity* , 2006, Journal of Biological Chemistry.

[93]  D. Kioussis,et al.  ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses , 2006, Nature Immunology.

[94]  Gabriel Pineda,et al.  Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. , 2006, Molecular cell.

[95]  Ebrahim Zandi,et al.  Regulation of IκB Kinase (IKK) Complex by IKKγ-dependent Phosphorylation of the T-loop and C Terminus of IKKβ* , 2006, Journal of Biological Chemistry.

[96]  S. Akira,et al.  IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9 , 2006, Nature.

[97]  A. Shahangian,et al.  Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response , 2006, Nature.

[98]  T. Sasaoka,et al.  Interleukin-1α inhibits insulin signaling with phosphorylating insulin receptor substrate-1 on serine residues in 3T3-L1 adipocytes , 2006 .

[99]  P. Bryce,et al.  TRAF1 regulates Th2 differentiation, allergic inflammation and nuclear localization of the Th2 transcription factor, NIP45. , 2006, International immunology.

[100]  Rui Li,et al.  IκB Kinase α Regulates Subcellular Distribution and Turnover of Cyclin D1 by Phosphorylation* , 2005, Journal of Biological Chemistry.

[101]  A. Hoffmann,et al.  Molecular Determinants of Crosstalk between Nuclear Receptors and Toll-like Receptors , 2005, Cell.

[102]  Zhijian J. Chen Ubiquitin signalling in the NF-κB pathway , 2005, Nature Cell Biology.

[103]  Toby Lawrence,et al.  IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation , 2005, Nature.

[104]  C. Bracken,et al.  Activity of Hypoxia-inducible Factor 2α Is Regulated by Association with the NF-κB Essential Modulator* , 2005, Journal of Biological Chemistry.

[105]  R. Gaynor,et al.  Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. , 2005, Molecular cell.

[106]  N. Perkins,et al.  Regulation of NF‐κB and p53 through activation of ATR and Chk1 by the ARF tumour suppressor , 2005, The EMBO journal.

[107]  J. Tschopp,et al.  The RIP kinases: crucial integrators of cellular stress. , 2005, Trends in biochemical sciences.

[108]  R. Hepp,et al.  Phosphorylation of SNAP-23 Regulates Exocytosis from Mast Cells* , 2005, Journal of Biological Chemistry.

[109]  G. Casey,et al.  The AKT/IκB kinase pathway promotes angiogenic/metastatic gene expression in colorectal cancer by activating nuclear factor-κB and β-catenin , 2005, Oncogene.

[110]  Zheng‐gang Liu,et al.  Molecular mechanism of TNF signaling and beyond , 2005, Cell Research.

[111]  E. Kieff,et al.  IκB kinase β phosphorylates Dok1 serines in response to TNF, IL-1, or γ radiation , 2004 .

[112]  M. Robinson,et al.  Kinase Mitogen-activated Protein Kinase Tpl-2/mek/extracellular Signal-regulated Lipopolysaccharide Activation of the Supplemental Material , 2004 .

[113]  Francesca Zazzeroni,et al.  Linking JNK signaling to NF-κB: a key to survival , 2004, Journal of Cell Science.

[114]  C. Coban,et al.  Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6 , 2004, Nature Immunology.

[115]  Sankar Ghosh,et al.  Signaling to NF-kappaB. , 2004, Genes & development.

[116]  Christian Schmidt,et al.  NF-κB and AP-1 Connection: Mechanism of NF-κB-Dependent Regulation of AP-1 Activity , 2004, Molecular and Cellular Biology.

[117]  A. Thiel,et al.  The IκB Kinase Complex and NF-κB Actas Master Regulators of Lipopolysaccharide-Induced Gene Expressionand Control Subordinate Activation ofAP-1 , 2004, Molecular and Cellular Biology.

[118]  Shao-Cong Sun,et al.  IκB Kinase Is an Essential Component of the Tpl2 Signaling Pathway , 2004, Molecular and Cellular Biology.

[119]  W. Greene,et al.  p53 Induces NF-κB Activation by an IκB Kinase-independent Mechanism Involving Phosphorylation of p65 by Ribosomal S6 Kinase 1* , 2004, Journal of Biological Chemistry.

[120]  E. Harhaj,et al.  Regulation of the NF-κB-inducing Kinase by Tumor Necrosis Factor Receptor-associated Factor 3-induced Degradation* , 2004, Journal of Biological Chemistry.

[121]  S. Howell,et al.  ABIN-2 Forms a Ternary Complex with TPL-2 and NF-κB1 p105 and Is Essential for TPL-2 Protein Stability , 2004, Molecular and Cellular Biology.

[122]  Bharat B. Aggarwal,et al.  Nuclear factor-κB: its role in health and disease , 2004, Journal of Molecular Medicine.

[123]  A. Baldwin,et al.  IκB Kinase α and p65/RelA Contribute to Optimal Epidermal Growth Factor-induced c-fos Gene Expression Independent of IκBα Degradation* , 2004, Journal of Biological Chemistry.

[124]  W. Greene,et al.  Shaping the nuclear action of NF-κB , 2004, Nature Reviews Molecular Cell Biology.

[125]  Ryuji Kobayashi,et al.  IκB Kinase Promotes Tumorigenesis through Inhibition of Forkhead FOXO3a , 2004, Cell.

[126]  M. Karin,et al.  IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis , 2004, Nature.

[127]  Giulio Superti-Furga,et al.  A physical and functional map of the human TNF-α/NF-κB signal transduction pathway , 2004, Nature Cell Biology.

[128]  M. Karin,et al.  A Dual Role for Ikkα in Tooth Development , 2004 .

[129]  C. Jefferies,et al.  Interferon Regulatory Factor-3-mediated Activation of the Interferon-sensitive Response Element by Toll-like receptor (TLR) 4 but Not TLR3 Requires the p65 Subunit of NF-κ* , 2003, Journal of Biological Chemistry.

[130]  A. Houng,et al.  Phosphorylation of SNAP-23 in Activated Human Platelets* , 2003, Journal of Biological Chemistry.

[131]  M. Karin,et al.  Identification of NAP1, a Regulatory Subunit of IκB Kinase-Related Kinases That Potentiates NF-κB Signaling , 2003, Molecular and Cellular Biology.

[132]  H. Shu,et al.  Casper/c-FLIP is physically and functionally associated with NF-κB1 p105 , 2003 .

[133]  J. Tschopp,et al.  Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes , 2003, Cell.

[134]  S. Smerdon,et al.  NF-κB1 p105 Negatively Regulates TPL-2 MEK Kinase Activity , 2003, Molecular and Cellular Biology.

[135]  Brian D. Strahl,et al.  A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression , 2003, Nature.

[136]  R. Gaynor,et al.  Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression , 2003, Nature.

[137]  G. Haegeman,et al.  Transcriptional activation of the NF‐κB p65 subunit by mitogen‐ and stress‐activated protein kinase‐1 (MSK1) , 2003, The EMBO journal.

[138]  Shao-Cong Sun,et al.  NF-kappaB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. , 2003, Molecular cell.

[139]  R. Gaynor,et al.  IKKalpha regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf. , 2003, Molecular biology of the cell.

[140]  C. Sardet,et al.  Post-activation Turn-off of NF-κB-dependent Transcription Is Regulated by Acetylation of p65* , 2003, The Journal of Biological Chemistry.

[141]  Jianping Ye,et al.  Serine Phosphorylation of Insulin Receptor Substrate 1 by Inhibitor κB Kinase Complex* 210 , 2002, The Journal of Biological Chemistry.

[142]  W. Greene,et al.  Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF‐κB , 2002, The EMBO journal.

[143]  C. Benedict,et al.  To kill or be killed: viral evasion of apoptosis , 2002, Nature Immunology.

[144]  D. Haller,et al.  IKKβ and Phosphatidylinositol 3-Kinase/Akt Participate in Non-pathogenic Gram-negative Enteric Bacteria-induced RelA Phosphorylation and NF-κB Activation in Both Primary and Intestinal Epithelial Cell Lines* , 2002, The Journal of Biological Chemistry.

[145]  David A. Brenner,et al.  Role of glycogen synthase kinase-3 in TNF-α-induced NF-κB activation and apoptosis in hepatocytes , 2002 .

[146]  G. Wahl,et al.  p53 stabilization is decreased upon NFκB activation , 2002 .

[147]  J. Qin,et al.  Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator Activity by IκB Kinase , 2002, Molecular and Cellular Biology.

[148]  S. Ghosh,et al.  The Phosphorylation Status of Nuclear NF-ΚB Determines Its Association with CBP/p300 or HDAC-1 , 2002 .

[149]  Young Chul Park,et al.  All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. , 2002, Journal of cell science.

[150]  多田 久里守 Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κB activation and protection from cell death , 2002 .

[151]  S. Saccani,et al.  p38-dependent marking of inflammatory genes for increased NF-κB recruitment , 2002, Nature Immunology.

[152]  B. Zwilling,et al.  NFκB and Sp1 Elements Are Necessary for Maximal Transcription of Toll-like Receptor 2 Induced by Mycobacterium avium1 , 2001, The Journal of Immunology.

[153]  R. Gaynor,et al.  Regulation of β-Catenin Function by the IκB Kinases* , 2001, The Journal of Biological Chemistry.

[154]  Y. Minemoto,et al.  Blocking Caspase-3-Mediated Proteolysis of IKKβ Suppresses TNF-α-Induced Apoptosis , 2001 .

[155]  Juan F. García,et al.  Targeted Disruption of the ζPKC Gene Results in the Impairment of the NF-κB Pathway , 2001 .

[156]  J. Pober,et al.  Tumor necrosis factor receptor-associated factors (TRAFs) , 2001, Oncogene.

[157]  T. Mak,et al.  Critical Roles of TRAF2 and TRAF5 in Tumor Necrosis Factor-induced NF-κB Activation and Protection from Cell Death* , 2001, The Journal of Biological Chemistry.

[158]  Eric Verdin,et al.  Duration of Nuclear NF-κB Action Regulated by Reversible Acetylation , 2001, Science.

[159]  L. Glimcher,et al.  Tumor Necrosis Factor Receptor–Associated Factor (Traf)2 Represses the T Helper Cell Type 2 Response through Interaction with Nfat-Interacting Protein (Nip45) , 2001, The Journal of experimental medicine.

[160]  P. Scheurich,et al.  The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. , 2001, Cellular signalling.

[161]  M. Karin,et al.  IKKα controls formation of the epidermis independently of NF-κB , 2001, Nature.

[162]  R. Ratan,et al.  The Epidermal Growth Factor Receptor Engages Receptor Interacting Protein and Nuclear Factor-κB (NF-κB)-inducing Kinase to Activate NF-κB , 2001, The Journal of Biological Chemistry.

[163]  B. Zwilling,et al.  NF B and Sp1 Elements Are Necessary for Maximal Transcription of Toll-like Receptor 2 Induced by Mycobacterium avium , 2001 .

[164]  T. Taniguchi,et al.  IRF family of transcription factors as regulators of host defense. , 2001, Annual review of immunology.

[165]  Brian Seed,et al.  Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule , 2000, Nature Immunology.

[166]  S. Westerheide,et al.  Tumor Necrosis Factor α-induced Phosphorylation of RelA/p65 on Ser529 Is Controlled by Casein Kinase II* , 2000, The Journal of Biological Chemistry.

[167]  G. Hart,et al.  O-Glycosylation of Nuclear and Cytosolic Proteins , 2000, The Journal of Biological Chemistry.

[168]  S. Ghosh,et al.  Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex , 2000 .

[169]  S. Akira,et al.  NF‐κB activation through IKK‐i‐dependent I‐TRAF/TANK phosphorylation , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[170]  H. Hanafusa,et al.  TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. , 1999, Molecular cell.

[171]  H. Pahl Activators and target genes of Rel/NF-κB transcription factors , 1999, Oncogene.

[172]  Yukio Nakamura,et al.  Genetic approaches in mice to understand Rel/NF-κB and IκB function: transgenics and knockouts , 1999, Oncogene.

[173]  H. Sakurai,et al.  IκB Kinases Phosphorylate NF-κB p65 Subunit on Serine 536 in the Transactivation Domain* , 1999, The Journal of Biological Chemistry.

[174]  Y. Lin,et al.  Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. , 1999, Genes & development.

[175]  L. Pfeffer,et al.  NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase , 1999, Nature.

[176]  C. Janeway,et al.  ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. , 1999, Genes & development.

[177]  R. Ross,et al.  Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-κB loop , 1999, Nature Cell Biology.

[178]  A. Baldwin,et al.  Apoptosis Promotes a Caspase-induced Amino-terminal Truncation of IκBα That Functions as a Stable Inhibitor of NF-κB* , 1999, The Journal of Biological Chemistry.

[179]  I. Verma,et al.  IKK1-deficient mice exhibit abnormal development of skin and skeleton. , 1999, Genes & development.

[180]  N. Perkins,et al.  Transcriptional Cross Talk between NF-κB and p53 , 1999, Molecular and Cellular Biology.

[181]  S. Morony,et al.  TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. , 1999, Genes & development.

[182]  T. Deerinck,et al.  Abnormal Morphogenesis But Intact IKK Activation in Mice Lacking the IKKα Subunit of IκB Kinase , 1999 .

[183]  S. Akira,et al.  Limb and skin abnormalities in mice lacking IKKalpha. , 1999, Science.

[184]  B. Kahn-Perlès,et al.  Physical interaction of the bHLH LYL1 protein and NF-κB1 p105 , 1999, Oncogene.

[185]  R. Beyaert,et al.  The cytokine‐inducible zinc finger protein A20 inhibits IL‐1‐induced NF‐κB activation at the level of TRAF6 , 1999, FEBS letters.

[186]  S. Jones,et al.  TNF recruits TRADD to the plasma membrane but not the trans-Golgi network, the principal subcellular location of TNF-R1. , 1999, Journal of immunology.

[187]  W. El-Deiry,et al.  p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300. , 1998, Cancer research.

[188]  D. Castle,et al.  Relocation of the t-SNARE SNAP-23 from Lamellipodia-like Cell Surface Projections Regulates Compound Exocytosis in Mast Cells , 1998, Cell.

[189]  N. Perkins Achieving transcriptional specificity with nf-κb , 1997 .

[190]  H. Patel,et al.  Cross-talk between transcription factors NF-κB and C/EBP in the transcriptional regulation of genes , 1997 .

[191]  H. Erdjument-Bromage,et al.  The Transcriptional Activity of NF-κB Is Regulated by the IκB-Associated PKAc Subunit through a Cyclic AMP–Independent Mechanism , 1997, Cell.

[192]  Soo Young Lee,et al.  TRAF-interacting Protein (TRIP): A Novel Component of the Tumor Necrosis Factor Receptor (TNFR)- and CD30-TRAF Signaling Complexes That Inhibits TRAF2-mediated NF-κB Activation , 1997, The Journal of experimental medicine.

[193]  D. Goeddel,et al.  I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[194]  D. Goeddel,et al.  The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[195]  T. Hirano,et al.  Triggering of the Human Interleukin-6 Gene by Interferon-γ and Tumor Necrosis Factor-α in Monocytic Cells Involves Cooperation between Interferon Regulatory Factor-1, NFκB, and Sp1 Transcription Factors (*) , 1995, The Journal of Biological Chemistry.

[196]  David Baltimore,et al.  Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses , 1995, Cell.

[197]  A. Baldwin,et al.  Distinct mechanisms for regulation of the interleukin-8 gene involve synergism and cooperativity between C/EBP and NF-kappa B , 1993, Molecular and Cellular Biology.

[198]  W. Greene,et al.  Cross‐coupling of the NF‐kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. , 1993, The EMBO journal.

[199]  M. Haine,et al.  Van Damme A. , 1986 .

[200]  T. Hunter,et al.  Essential role of tuberous sclerosis genes TSC 1 and TSC 2 in NFk B activation and cell survival , 2022 .