Classical arcs in PG(r, q) for 11 <= q <= 19
暂无分享,去创建一个
J. M. Chao | H. Kaneta | H. Kaneta | J. Chao
[1] J. Thas,et al. General Galois geometries , 1992 .
[2] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[3] Ray Hill,et al. A First Course in Coding Theory , 1988 .
[4] B. Segre. Curve razionali normali ek-archi negli spazi finiti , 1955 .
[5] H. Kaneta,et al. An elementary proof and an extension of Thas' theorem on k-arcs , 1989, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] H. Weyl. The Classical Groups , 1939 .
[7] L.R.A Casse,et al. On the uniqueness of (q + 1)4-arcs of PG(4, q), Q = 2h, h >=3 , 1984, Discret. Math..
[8] J. Hirschfeld. Projective Geometries Over Finite Fields , 1980 .
[9] Leo Storme,et al. Arcs fixed by A5 and A6 , 1996 .
[10] A.H. Ali,et al. On the size of arcs in projective spaces , 1995, IEEE Trans. Inf. Theory.
[11] David G. Glynn. The non-classical 10-arc of PG(4, 9) , 1986, Discret. Math..
[12] J. Hirschfeld. Finite projective spaces of three dimensions , 1986 .