World-wide whale worms? A new species of Osedax from the shallow north Atlantic

We describe a new species of the remarkable whalebone-eating siboglinid worm genus, Osedax, from a whale carcass in the shallow north Atlantic, west of Sweden. Previously only recorded from deep-sea (1500–3000 m) whale-falls in the northeast Pacific, this is the first species of Osedax known from a shelf-depth whale-fall, and the first from the Atlantic Ocean. The new species, Osedax mucofloris sp. n., is abundant on the bones of an experimentally implanted Minke whale carcass (Balaenoptera acutorostrata) at 125 m depth in the shallow North Sea. O. mucofloris can be cultured on bones maintained in aquaria. The presence of O. mucofloris in the shallow North Sea and northeast Pacific suggests global distribution on whale-falls for the Osedax clade. Molecular evidence from mitochondrial cytochrome oxidase 1 (CO1) and 18S rRNA sequences suggests that O. mucofloris has high dispersal rates, and provides support for the idea of whale-falls acting as ‘stepping-stones’ for the global dispersal of siboglinid annelids over ecological and evolutionary time.

[1]  Lamellisabellidae,et al.  A cladistic analysis of Siboglinidae Caullery , 1914 ( Polychaeta , Annelida ) : formerly the phyla Pogonophora and Vestimentifera , 2001 .

[2]  S. Palumbi,et al.  Whales Before Whaling in the North Atlantic , 2003, Science.

[3]  A. Baco,et al.  Fauna of whale falls: systematics and ecology of a new polychaete (Annelida: Chrysopetalidae) from the deep Pacific Ocean , 2004 .

[4]  B. Marshall OSTEOPELTIDAE (MOLLUSCA:GASTROPODA): A NEW FAMILY OF LIMPETS ASSOCIATED WITH WHALE BONE IN THE DEEP-SEA , 1987 .

[5]  P. Girguis,et al.  A paradox resolved: sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  D. Kadko,et al.  Use of 210Pb/226Ra disequilibria in the dating of deep-sea whale falls , 2004 .

[7]  G. Vermeij Anatomy of an invasion: the trans-Arctic interchange , 1991, Paleobiology.

[8]  R. Vrijenhoek,et al.  Evolutionary origins and age of vestimentiferan tube-worms , 1998 .

[9]  D. Cooper The preparation of serial sections of platyhelminth parasites, with details of the materials and facilities required , 1988, Systematic Parasitology.

[10]  G. Rouse,et al.  The phylogenetic position of Siboglinidae (Annelida) inferred from 18S rRNA, 28S rRNA and morphological data , 2004, Cladistics : the international journal of the Willi Hennig Society.

[11]  R. Väinölä Repeated trans-Arctic invasions in littoral bivalves: molecular zoogeography of the Macoma balthica complex , 2003 .

[12]  Paolo Heiniger,et al.  The Leaning Tower of Pisa , 1995 .

[13]  Colleen Cavanaugh,et al.  Marine ecology: Do mussels take wooden steps to deep-sea vents? , 2000, Nature.

[14]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[15]  A. Schulze,et al.  Siboglinid evolution shaped by habitat preference and sulfide tolerance , 2003, Hydrobiologia.

[16]  C. German,et al.  Evolution and Biogeography of Deep-Sea Vent and Seep Invertebrates , 2002, Science.

[17]  C. Young,et al.  Reproduction and dispersal at vents and cold seeps , 1999, Journal of the Marine Biological Association of the United Kingdom.

[18]  J. Deming,et al.  Vent fauna on whale remains , 1989, Nature.

[19]  R. Squires,et al.  Whale carcasses , 1991, Nature.

[20]  C. Smith,et al.  Morphology, reproductive biology and genetic structure of the whale-fall and hydrothermal vent specialist, Bathykurila guaymasensis , 2005 .

[21]  R. Vrijenhoek,et al.  Molecular Evidence that Sclerolinum brattstromi Is Closely Related to Vestimentiferans, not to Frenulate Pogonophorans (Siboglinidae, Annelida) , 2001, The Biological Bulletin.

[22]  John C. Avise,et al.  The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations , 1979, Journal of Molecular Evolution.

[23]  S. Goffredi,et al.  Osedax: Bone-Eating Marine Worms with Dwarf Males , 2004, Science.

[24]  S. Palumbi,et al.  Nucleic acids II: the polymerase chain reaction , 1996 .

[25]  A. Warén New and little known mollusca from Iceland , 1989 .

[26]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[27]  D. Ord,et al.  PAUP:Phylogenetic analysis using parsi-mony , 1993 .

[28]  Imants G. Priede,et al.  The fate of cetacean carcasses in the deep sea: observations on consumption rates and succession of scavenging species in the abyssal north-east Atlantic Ocean , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  A. Baco,et al.  ECOLOGY OF WHALE FALLS AT THE DEEP-SEA FLOOR , 2003 .

[30]  D. McHugh,et al.  Molecular evidence that echiurans and pogonophorans are derived annelids. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Dufour,et al.  Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves , 2003, Nature.

[32]  M. Lilley,et al.  Rapid growth at deep-sea vents , 1994, Nature.

[33]  R. Vrijenhoek,et al.  The phylogenetic relationships of whale-fall vesicomyid clams based on mitochondrial COI DNA sequences , 1999 .

[34]  J. Deming,et al.  Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: Bone‐colonizing bacteria and invertebrate endosymbionts , 1997, Microscopy research and technique.

[35]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[36]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .

[37]  I. Hanski Metapopulation dynamics , 1998, Nature.

[38]  E. Glover,et al.  Functional anatomy, chemosymbiosis and evolution of the Lucinidae , 2000, Geological Society, London, Special Publications.