SOBER SPACES AND CONTINUATIONS

A topological space is sober if it has exactly the points that are dictated by its open sets. We explain the analogy with the way in which computational values are determined by the observations that can be made of them. A new definition of sobriety is formulated in terms of lambda calculus and elementary category theory, with no reference to lattice structure, but, for topological spaces, this coincides with the stan- dard lattice-theoretic definition. The primitive symbolic and categorical structures are extended to make their types sober. For the natural numbers, the additional structure provides definition by description and general recursion. We use the same basic categorical construction that Thielecke, Fuhrmann and Selinger use to study continuations, but our emphasis is completely different: we concentrate on the fragment of their calculus that excludes computational effects, but show how it nevertheless defines new denotational values. Nor is this "denotational semantics of continuations using sober spaces", though that could easily be derived. On the contrary, this paper provides the underlying λ-calculus on the basis of which abstract Stone duality will re-axiomatise general topology. The leading model of the new axioms is the category of locally compact locales and continuous maps.

[1]  Andrew W. Appel,et al.  Compiling with Continuations , 1991 .

[2]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[3]  John R. Isbell,et al.  Function spaces and adjoints. , 1975 .

[4]  G. Frege Grundgesetze der Arithmetik , 1893 .

[5]  S. Lane Categories for the Working Mathematician , 1971 .

[6]  Christopher T. Haynes,et al.  Logic Continuations , 1986, J. Log. Program..

[7]  Paul Taylor Local Compactness and the Baire Category Theorem in Abstract Stone Duality , 2002, CTCS.

[8]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[9]  G. B. M. Principia Mathematica , 1911, Nature.

[10]  J. Ferreirós From Frege to Gödel. A Source Book in Mathematical Logic, 1879¿1931: By Jean van Heijenoort. Cambridge, MA (Harvard University Press). 1967; new paperback edn., 2002. 664 pages, 1 halftone. ISBN: 0-674-32449-8. $27.95 , 2004 .

[11]  Monique Hakim,et al.  Topos annelés et schémas relatifs , 1972 .

[12]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[13]  Carsten Führmann,et al.  Direct Models for the Computational Lambda Calculus , 1999, MFPS.

[14]  John C. Reynolds,et al.  The discoveries of continuations , 1993, LISP Symb. Comput..

[15]  Jr. Guy L. Steele,et al.  Rabbit: A Compiler for Scheme , 1978 .

[16]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[17]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[18]  Carsten Führmann,et al.  Varieties of Effects , 2002, FoSSaCS.

[19]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[20]  J. Hyland First steps in synthetic domain theory , 1991 .

[21]  Paul Taylor,et al.  Practical Foundations of Mathematics , 1999, Cambridge studies in advanced mathematics.

[22]  F. Hausdorff Grundzüge der Mengenlehre , 1914 .

[23]  John Power,et al.  Premonoidal categories as categories with algebraic structure , 2002, Theor. Comput. Sci..

[24]  Paul Taylor,et al.  The fixed point property in synthetic domain theory , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[25]  Andre Scedrov,et al.  Categories, allegories , 1990, North-Holland mathematical library.

[26]  Hayo Thielecke Comparing Control Constructs by Double-barrelled {CPS} Transforms , 2001, MFPS.

[27]  F. E. J. Linton,et al.  An outline of functorial semantics , 1969 .

[28]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[29]  Ivor Grattan-Guinness The Search for Mathematical Roots, 1870-1940 , 2000 .

[30]  S. Vickers Topology via Logic , 1989 .

[31]  Paul Taylor,et al.  An Elementary Theory of the Category of Locally Compact Locales , 2003 .

[32]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[33]  H. Simmons,et al.  A couple of triples , 1982 .

[34]  Peter Selinger,et al.  Control categories and duality: on the categorical semantics of the lambda-mu calculus , 2001, Mathematical Structures in Computer Science.

[35]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[36]  Paul Taylor SUBSPACES IN ABSTRACT STONE DUALITY , 2002 .

[37]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[38]  Localization and sheaf reflectors , 1975 .

[39]  Michael W. Mislove,et al.  Local compactness and continuous lattices , 1981 .

[40]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[41]  Hayo Thielecke,et al.  Categorical Structure of Continuation Passing Style , 1997 .

[42]  Paul Taylor,et al.  Non-Artin Gluing in Recursion Theory and Lifting in Abstract Stone Duality , 2003 .

[43]  P. J. Landin The Mechanical Evaluation of Expressions , 1964, Comput. J..

[44]  Edmund Robinson,et al.  Premonoidal categories and notions of computation , 1997, Mathematical Structures in Computer Science.

[45]  A. Pitts INTRODUCTION TO HIGHER ORDER CATEGORICAL LOGIC (Cambridge Studies in Advanced Mathematics 7) , 1987 .

[46]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .

[47]  R. Fox,et al.  On topologies for function spaces , 1945 .

[48]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[49]  Hayo Thielecke,et al.  On the call-by-value CPS transform and its semantics , 2004, Inf. Comput..

[50]  Michael J. Fischer,et al.  Lambda-calculus schemata , 1993, LISP Symb. Comput..

[51]  Hayo Thielecke Continuation semantics and self-adjointness , 1997, MFPS.