Feynman rules for the rational part of the QCD 1-loop amplitudes
暂无分享,去创建一个
R. Pittau | M. V. Garzelli | R. Pittau | M. Garzelli | C. Papadopoulos | C. G. Papadopoulos | P. Draggiotis | P. Draggiotis | C. G. Papadopoulos
[1] Z. Kunszt,et al. Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.
[2] L. Dixon,et al. Fusing gauge theory tree amplitudes into loop amplitudes , 1994, hep-ph/9409265.
[3] J. Guillet,et al. Precise predictions for LHC using a GOLEM , 2008, 0807.0605.
[4] T. Binoth,et al. golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs , 2008, Comput. Phys. Commun..
[5] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[6] Aggeliki Kanaki,et al. HELAC: A package to compute electroweak helicity amplitudes , 2000, hep-ph/0002082.
[7] M. Veltman,et al. One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .
[8] Costas G. Papadopoulos,et al. CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.
[9] Gang Yang,et al. The rational parts of one-loop QCD amplitudes I: The general formalism , 2006, hep-ph/0607015.
[10] Z. Kunszt,et al. A numerical unitarity formalism for evaluating one-loop amplitudes , 2007, 0708.2398.
[11] R. Pittau,et al. Numerical evaluation of six-photon amplitudes , 2007, 0704.1271.
[12] A. Lazopoulos. Multi-gluon one-loop amplitudes numerically. , 2008, 0812.2998.
[13] L. Dixon,et al. One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.
[14] A. Denner,et al. Feyn Arts ― computer-algebraic generation of Feynman graphs and amplitudes , 1990 .
[15] Z. Kunszt,et al. Masses, fermions and generalized D-dimensional unitarity , 2008, 0806.3467.
[16] Bo Feng,et al. Integral coefficients for one-loop amplitudes , 2007, 0711.4284.
[17] D. Wackeroth,et al. O(alpha) corrections to e+e- --> WW --> 4fermions(+gamma): first numerical results from RACOONWW , 1999 .
[18] G. Zanderighi,et al. On the numerical evaluation of one-loop amplitudes: the gluonic case , 2008, 0805.2152.
[19] Alessandro Cafarella,et al. Helac-Phegas: A generator for all parton level processes , 2007, Comput. Phys. Commun..
[20] D. Wackeroth,et al. O(alpha) corrections to e+e- --> WW --> 4fermions(+gamma): first numerical results from RACOONWW , 1999, hep-ph/9912261.
[21] R. Pittau,et al. TOPAZ0 - a program for computing observables and for fitting cross sections and forward-backward asymmetries around the Z0 peak , 1993 .
[22] P. Mastrolia,et al. Closed-form decomposition of one-loop massive amplitudes , 2008, 0803.1989.
[23] Gang Yang,et al. The Rational Part of QCD Amplitude II: the Five-Gluon , 2006 .
[24] T. Hahn,et al. Automatized One-Loop Calculations in 4 and D dimensions , 1998 .
[25] L. Dixon,et al. On-shell methods in perturbative QCD , 2007, 0704.2798.
[26] Ansgar Denner,et al. Feyn Calc―computer-algebraic calculation of Feynman amplitudes , 1991 .
[27] L. Dixon,et al. The last of the finite loop amplitudes in QCD , 2005, hep-ph/0505055.
[28] Giovanni Ossola,et al. Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.
[29] W. Kilgore. One-loop Integral Coefficients from Generalized Unitarity , 2007, 0711.5015.
[30] G. Passarino,et al. All-purpose numerical evaluation of one-loop multi-leg Feynman diagrams , 2002, hep-ph/0209219.
[31] L. Dixon,et al. SERVICE DE PHYSIQUE THEORIQUE , 2004 .
[32] A. Denner. Techniques for the Calculation of Electroweak Radiative Corrections at the One‐Loop Level and Results for W‐physics at LEP 200 , 2007, 0709.1075.
[33] C. Papadopoulos,et al. HELAC-PHEGAS: Automatic computation of helicity amplitudes and cross sections , 2000, hep-ph/0012004.
[34] R. Pittau,et al. The NLO multileg working group: summary report , 2008, 0803.0494.
[35] One-loop corrections to two-quark three-gluon amplitudes☆☆☆ , 1994, hep-ph/9409393.
[36] C. Schubert,et al. An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .
[37] T. Riemann,et al. Complete reduction of one-loop tensor 5- and 6-point integrals , 2008, 0812.2134.
[38] A. Denner,et al. NLO QCD corrections to production at the LHC: 1. quark-antiquark annihilation , 2008, 0807.1248.
[39] R. Pittau,et al. Optimizing the Reduction of One-Loop Amplitudes , 2008, 0803.3964.
[40] R. Pittau,et al. Recursive Numerical Calculus of One-loop Tensor Integrals , 2008 .
[41] D. Maitre,et al. An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.
[42] M. Bilenky,et al. ZFITTER v.6.21: A semi-analytical program for fermion pair production in e+e- annihilation , 1999, hep-ph/9908433.
[43] R. Pittau,et al. Automated one-loop calculations: a proof of concept , 2009, 0903.4665.
[44] J. Guillet,et al. Algebraic evaluation of rational polynomials in one-loop amplitudes , 2006, hep-ph/0609054.
[45] R. Pittau,et al. On the rational terms of the one-loop amplitudes , 2008, 0802.1876.
[46] Z. Xiao,et al. The Rational Part of QCD Amplitude I: the General Formalism , 2006 .