Feynman rules for the rational part of the QCD 1-loop amplitudes

We compute the complete set of Feynman Rules producing the Rational Terms of kind R2 needed to perform any QCD 1-loop calculation. We also explicitly check that in order to account for the entire R2 contribution, even in case of processes with more than four external legs, only up to four-point vertices are needed. Our results are expressed both in the 't Hooft Veltman regularization scheme and in the Four Dimensional Helicity scheme, using explicit color configurations as well as the color connection language.

[1]  Z. Kunszt,et al.  Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.

[2]  L. Dixon,et al.  Fusing gauge theory tree amplitudes into loop amplitudes , 1994, hep-ph/9409265.

[3]  J. Guillet,et al.  Precise predictions for LHC using a GOLEM , 2008, 0807.0605.

[4]  T. Binoth,et al.  golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs , 2008, Comput. Phys. Commun..

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Aggeliki Kanaki,et al.  HELAC: A package to compute electroweak helicity amplitudes , 2000, hep-ph/0002082.

[7]  M. Veltman,et al.  One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .

[8]  Costas G. Papadopoulos,et al.  CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.

[9]  Gang Yang,et al.  The rational parts of one-loop QCD amplitudes I: The general formalism , 2006, hep-ph/0607015.

[10]  Z. Kunszt,et al.  A numerical unitarity formalism for evaluating one-loop amplitudes , 2007, 0708.2398.

[11]  R. Pittau,et al.  Numerical evaluation of six-photon amplitudes , 2007, 0704.1271.

[12]  A. Lazopoulos Multi-gluon one-loop amplitudes numerically. , 2008, 0812.2998.

[13]  L. Dixon,et al.  One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.

[14]  A. Denner,et al.  Feyn Arts ― computer-algebraic generation of Feynman graphs and amplitudes , 1990 .

[15]  Z. Kunszt,et al.  Masses, fermions and generalized D-dimensional unitarity , 2008, 0806.3467.

[16]  Bo Feng,et al.  Integral coefficients for one-loop amplitudes , 2007, 0711.4284.

[17]  D. Wackeroth,et al.  O(alpha) corrections to e+e- --> WW --> 4fermions(+gamma): first numerical results from RACOONWW , 1999 .

[18]  G. Zanderighi,et al.  On the numerical evaluation of one-loop amplitudes: the gluonic case , 2008, 0805.2152.

[19]  Alessandro Cafarella,et al.  Helac-Phegas: A generator for all parton level processes , 2007, Comput. Phys. Commun..

[20]  D. Wackeroth,et al.  O(alpha) corrections to e+e- --> WW --> 4fermions(+gamma): first numerical results from RACOONWW , 1999, hep-ph/9912261.

[21]  R. Pittau,et al.  TOPAZ0 - a program for computing observables and for fitting cross sections and forward-backward asymmetries around the Z0 peak , 1993 .

[22]  P. Mastrolia,et al.  Closed-form decomposition of one-loop massive amplitudes , 2008, 0803.1989.

[23]  Gang Yang,et al.  The Rational Part of QCD Amplitude II: the Five-Gluon , 2006 .

[24]  T. Hahn,et al.  Automatized One-Loop Calculations in 4 and D dimensions , 1998 .

[25]  L. Dixon,et al.  On-shell methods in perturbative QCD , 2007, 0704.2798.

[26]  Ansgar Denner,et al.  Feyn Calc―computer-algebraic calculation of Feynman amplitudes , 1991 .

[27]  L. Dixon,et al.  The last of the finite loop amplitudes in QCD , 2005, hep-ph/0505055.

[28]  Giovanni Ossola,et al.  Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.

[29]  W. Kilgore One-loop Integral Coefficients from Generalized Unitarity , 2007, 0711.5015.

[30]  G. Passarino,et al.  All-purpose numerical evaluation of one-loop multi-leg Feynman diagrams , 2002, hep-ph/0209219.

[31]  L. Dixon,et al.  SERVICE DE PHYSIQUE THEORIQUE , 2004 .

[32]  A. Denner Techniques for the Calculation of Electroweak Radiative Corrections at the One‐Loop Level and Results for W‐physics at LEP 200 , 2007, 0709.1075.

[33]  C. Papadopoulos,et al.  HELAC-PHEGAS: Automatic computation of helicity amplitudes and cross sections , 2000, hep-ph/0012004.

[34]  R. Pittau,et al.  The NLO multileg working group: summary report , 2008, 0803.0494.

[35]  One-loop corrections to two-quark three-gluon amplitudes☆☆☆ , 1994, hep-ph/9409393.

[36]  C. Schubert,et al.  An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .

[37]  T. Riemann,et al.  Complete reduction of one-loop tensor 5- and 6-point integrals , 2008, 0812.2134.

[38]  A. Denner,et al.  NLO QCD corrections to production at the LHC: 1. quark-antiquark annihilation , 2008, 0807.1248.

[39]  R. Pittau,et al.  Optimizing the Reduction of One-Loop Amplitudes , 2008, 0803.3964.

[40]  R. Pittau,et al.  Recursive Numerical Calculus of One-loop Tensor Integrals , 2008 .

[41]  D. Maitre,et al.  An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.

[42]  M. Bilenky,et al.  ZFITTER v.6.21: A semi-analytical program for fermion pair production in e+e- annihilation , 1999, hep-ph/9908433.

[43]  R. Pittau,et al.  Automated one-loop calculations: a proof of concept , 2009, 0903.4665.

[44]  J. Guillet,et al.  Algebraic evaluation of rational polynomials in one-loop amplitudes , 2006, hep-ph/0609054.

[45]  R. Pittau,et al.  On the rational terms of the one-loop amplitudes , 2008, 0802.1876.

[46]  Z. Xiao,et al.  The Rational Part of QCD Amplitude I: the General Formalism , 2006 .