Combined use of zoophytophagous mirids for sustainable biological protection of greenhouse tomato crops

[1]  M. Ricupero,et al.  Bioactivity and physico-chemistry of garlic essential oil nanoemulsion in tomato , 2022, Entomologia Generalis.

[2]  A. Urbaneja,et al.  Sesame as an Alternative Host Plant to Establish and Retain Predatory Mirids in Open-Field Tomatoes , 2022, Plants.

[3]  N. Desneux,et al.  Combining mirid predators to reduce crop damage and sustain biocontrol in multi-prey systems , 2022, Journal of Pest Science.

[4]  R. Moerkens,et al.  Preference and plant damage caused by Nesidiocoris tenuis on twenty-one commercial tomato cultivars , 2022, Journal of Pest Science.

[5]  T. Brévault,et al.  Approaches to conservation of Nesidiocoris tenuis for biological control of pests in field-grown tomato in Senegal , 2022, Biological Control.

[6]  A. Leman,et al.  Dicyphus predatory bugs pre-established on tomato plants reduce Nesidiocoris tenuis population growth , 2022, Journal of Pest Science.

[7]  P. Nisianakis,et al.  Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen , 2022, Food and Chemical Toxicology.

[8]  Coline C. Jaworski,et al.  Integrated pest management of Tuta absoluta: practical implementations across different world regions , 2021, Journal of Pest Science.

[9]  Coline C. Jaworski,et al.  Integrated pest management of Tuta absoluta: practical implementations across different world regions , 2021, Journal of Pest Science.

[10]  J. A. Jaques,et al.  Host plant scent mediates patterns of attraction/repellence among predatory mites , 2021, Entomologia Generalis.

[11]  Hong Wang,et al.  Host selection behavior of the host-feeding parasitoid Necremnus tutae on Tuta absoluta , 2021, Entomologia Generalis.

[12]  C. Rodriguez‐Saona,et al.  Bottom-Up Forces in Agroecosystems and Their Potential Impact on Arthropod Pest Management. , 2021, Annual review of entomology.

[13]  N. Desneux,et al.  Combination of generalist predators, Nesidiocoris tenuis and Macrolophus pygmaeus, with a companion plant, Sesamum indicum: What benefit for biological control of Tuta absoluta? , 2021, PloS one.

[14]  Coline C. Jaworski,et al.  Combining banker plants to achieve long-term pest control in multi-pest and multi-natural enemy cropping systems , 2021, Journal of Pest Science.

[15]  Christine Becker,et al.  Feeding guild determines strength of top-down forces in multitrophic system experiencing bottom-up constraints. , 2021, The Science of the total environment.

[16]  N. Desneux,et al.  Geographical distribution and host range status of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) in Côte d'Ivoire , 2021, International Journal of Tropical Insect Science.

[17]  A. Granell,et al.  Eliciting tomato plant defenses by exposure to herbivore induced plant volatiles , 2021, Entomologia Generalis.

[18]  F. Valente,et al.  Functional Response and Predation Rate of Dicyphus cerastii Wagner (Hemiptera: Miridae) , 2021, Insects.

[19]  M. González‐Teuber,et al.  Lethal and oxidative stress side effects of organic and synthetic pesticides on the insect scale predator Rhyzobius lophanthae , 2021, Entomologia Generalis.

[20]  F. Wan,et al.  Molecular characteristics of three cold resistance genes and their roles in temperature stress response in two Bemisia tabaci cryptic species , 2021, Entomologia Generalis.

[21]  N. Desneux,et al.  Alternative extraguild prey modifies focal extraguild prey consumption and parasitism but not intraguild predation intensity , 2021 .

[22]  A. Urbaneja,et al.  Plant feeding by Nesidiocoris tenuis: Quantifying its behavioral and mechanical components , 2021, Biological Control.

[23]  J. Arnó,et al.  Interactions among Myzus persicae, predators and parasitoids may hamper biological control in Mediterranean peach orchards , 2020 .

[24]  A. Urbaneja,et al.  Use of zoophytophagous mirid bugs in horticultural crops: current challenges and future perspectives. , 2020, Pest management science.

[25]  I. Hanssen,et al.  Nesidiocoris tenuis as a pest in Northwest Europe: Intervention threshold and influence of Pepino mosaic virus , 2020 .

[26]  N. Desneux,et al.  Effect of crop diversity on predation activity and population dynamics of the mirid predator Nesidiocoris tenuis , 2020, Journal of Pest Science.

[27]  M. Ghanim,et al.  Insecticide resistance and its management in Bemisia tabaci species , 2020, Journal of Pest Science.

[28]  N. Desneux,et al.  Impact of a shared sugar food source on biological control of Tuta absoluta by the parasitoid Necremnus tutae , 2019, Journal of Pest Science.

[29]  J. V. van Lenteren,et al.  Natural enemies of Tuta absoluta in the Mediterranean basin, Europe and South America , 2019, Biocontrol Science and Technology.

[30]  R. Nauen,et al.  Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook , 2019, Journal of Pest Science.

[31]  A. Leman,et al.  Functional response of the mirid predators Dicyphus bolivari and Dicyphus errans and their efficacy as biological control agents of Tuta absoluta on tomato , 2019, Journal of Pest Science.

[32]  Henri E. Z. Tonnang,et al.  Occurrence, biology, natural enemies and management of Tuta absoluta in Africa , 2018, Entomologia Generalis.

[33]  N. Desneux,et al.  Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges , 2018, Journal of Pest Science.

[34]  R. Albajes,et al.  Pre-planting inoculation for early establishment of Dicyphus bolivari and D. errans on tomatoes , 2018, BioControl.

[35]  M. J. Ramírez‐Soria,et al.  How Safe Is It to Rely on Macrolophus pygmaeus (Hemiptera: Miridae) as a Biocontrol Agent in Tomato Crops? , 2018, Front. Ecol. Evol..

[36]  L. Kumar,et al.  Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates , 2018, PloS one.

[37]  N. Seraphides,et al.  Functional response and multiple predator effects of two generalist predators preying on Tuta absoluta eggs. , 2018, Pest management science.

[38]  N. Desneux,et al.  Ecology, Worldwide Spread, and Management of the Invasive South American Tomato Pinworm, Tuta absoluta: Past, Present, and Future. , 2018, Annual review of entomology.

[39]  Abhijin Adiga,et al.  From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe , 2017, Journal of Pest Science.

[40]  M. Aragón-Sánchez,et al.  Temperature-dependent development of Macrolophus pygmaeus and its applicability to biological control , 2017, BioControl.

[41]  B. Ingegno,et al.  The potential of host plants for biological control of Tuta absoluta by the predator Dicyphus errans. , 2017, Bulletin of entomological research.

[42]  N. Desneux,et al.  Dynamics of Bemisia tabaci biotypes and insecticide resistance in Fujian province in China during 2005–2014 , 2017, Scientific Reports.

[43]  N. Desneux,et al.  Life-History Traits of Macrolophus pygmaeus with Different Prey Foods , 2016, PloS one.

[44]  N. Desneux,et al.  Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? , 2016, BioControl.

[45]  Coline C. Jaworski,et al.  Apparent competition between major pests reduces pest population densities on tomato crop, but not yield loss , 2015, Journal of Pest Science.

[46]  A. Cocco,et al.  Spatial distribution and sequential sampling plans for Tuta absoluta (Lepidoptera: Gelechiidae) in greenhouse tomato crops. , 2015, Pest management science.

[47]  N. Desneux,et al.  Intraguild predation between an exotic and a native coccinellid in Argentina: the role of prey density , 2015, Journal of Pest Science.

[48]  E. Haubruge,et al.  Macrolophus pygmaeus (Rambur) as an efficient predator of the tomato leafminer Tuta absoluta (Meyrick) in Europe. A review , 2014 .

[49]  M. Teixeira Alves,et al.  Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems. , 2014, Pest management science.

[50]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[51]  A. Urbaneja,et al.  A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control , 2014, BioControl.

[52]  A. Giatropoulos,et al.  Intraguild predation and sublethal interactions between two zoophytophagous mirids, Macrolophus pygmaeus and Nesidiocoris tenuis , 2014 .

[53]  W. Symondson,et al.  Do the interactions among natural enemies compromise the biological control of the whitefly Bemisia tabaci? , 2014, Journal of Pest Science.

[54]  Coline C. Jaworski,et al.  Sharing a predator: can an invasive alien pest affect the predation on a local pest? , 2013, Population Ecology.

[55]  N. Agustí,et al.  Conspecific and heterospecific interactions between two omnivorous predators on tomato , 2012 .

[56]  P. Stansly,et al.  Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato , 2012 .

[57]  Nicolas Desneux,et al.  The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production , 2011, Journal of Pest Science.

[58]  J. Arnó,et al.  Plant damage to vegetable crops by zoophytophagous mirid predators , 2011 .

[59]  Christine Poncet,et al.  Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control , 2010, Journal of Pest Science.

[60]  J. Sanchez Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. , 2009 .

[61]  J. Arnó,et al.  Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) , 2009, Bulletin of Entomological Research.

[62]  A. Urbaneja,et al.  Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato , 2009, BioControl.

[63]  J. Arnó,et al.  Life history parameters for Nesidiocoris tenuis (Reuter) (Het., Miridae) under different temperature regimes , 2009 .

[64]  J. A. Sánchez,et al.  Impact of the Zoophytophagous Plant Bug Nesidiocoris tenuis (Heteroptera: Miridae) on Tomato Yield , 2008, Journal of economic entomology.

[65]  Amandine Lurette,et al.  Modelling temperature‐dependent bionomics of Bemisia tabaci (Q‐biotype) , 2007 .

[66]  Ò. Alomar,et al.  Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii , 2004 .

[67]  R. Albajes,et al.  Behavioral responses of three plant-inhabiting predators to different prey densities , 2004 .

[68]  Ò. Alomar,et al.  Impact of the presence of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on whitefly (Homoptera: Aleyrodidae) predation by Macrolophus caliginosus (Wagner) (Heteroptera: Miridae) , 2002 .

[69]  D. Perdikis,et al.  Thermal Requirements for Development of the Polyphagous Predator Macrolophus pygmaeus (Hemiptera: Miridae) , 2002 .

[70]  R. Albajes,et al.  Colonisation of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in northern Spain , 2002 .

[71]  R. McGregor,et al.  The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation , 2000 .

[72]  A. Leman,et al.  Development and thermal activity thresholds of European mirid predatory bugs , 2021 .

[73]  Pankaj Jain Dharma , 2019, Hinduism and Tribal Religions.

[74]  Ki‐Hyun Kim,et al.  Exposure to pesticides and the associated human health effects. , 2017, The Science of the total environment.

[75]  A. Urbaneja,et al.  The Zoophytophagous Predator Nesidiocoris tenuis: A Successful But Controversial Biocontrol Agent in Tomato Crops , 2016 .

[76]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[77]  L. Boykin,et al.  Bemisia tabaci: a statement of species status. , 2011, Annual review of entomology.

[78]  D. Perdikis,et al.  Studies on the damage potential of the predator Nesidiocoris tenuis on tomato plants. , 2009 .

[79]  Axel Decourtye,et al.  The sublethal effects of pesticides on beneficial arthropods. , 2007, Annual review of entomology.