Selecting the best linear transfer function model

Statistics currently used to determine the best model order based on the covariance of the parameter estimates or the instrumental product-moment matrix are critically examined, particularly for their applicability to situations where input and output units differ or where there is a large or small steady-state gain. A normalization process is advocated which extends the usefulness and reliability of the statistics in these situations. A procedure for comparing determinant statistics for models of different orders is described, which simplifies current methods. The improved procedures and statistics are compared using simulated data and an instrumental variable estimation method, confirming their worth.

[1]  Heinz Unbehauen,et al.  Tests for Determining the Order of Canonical Models of Multivariable Systems , 1982 .

[2]  Mario Milanese,et al.  Methods for the Selection of Approximating Classes of Models , 1979 .

[3]  R. C. St. John,et al.  D-Optimality for Regression Designs: A Review , 1975 .

[4]  Torsten Söderström,et al.  Optimal instrumental-variable methods for identification of multivariable linear systems , 1983, Autom..

[5]  László Keviczky,et al.  Identification and adaptive control of a glass furnace , 1981, Autom..

[6]  T. Söderström On model structure testing in system identification , 1977 .

[7]  P. Young Some observations on instrumental variable methods of time-series analysis , 1976 .

[8]  S. S. Iyengar,et al.  Statistical techniques in modeling of complex systems: Single and multiresponse models , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Anthony J. Jakeman,et al.  Advanced methods of recursive time-series analysis , 1983 .

[10]  Graham Freeman On the convergence of Young's instrumental variable and approximate maximum likelihood algorithms , 1984 .

[11]  C. Woodside Estimation of the order of linear systems , 1971 .

[12]  T. Ozaki On the Order Determination of Arima Models , 1977 .

[13]  A.J.W. van den Boom,et al.  The determination of the orders of process-and noise dynamics , 1974, Autom..

[14]  W. Gersch,et al.  Estimation of power spectra with finite-order autoregressive models , 1973 .

[15]  Anthony J. Jakeman,et al.  On the decoupling of system and noise model parameter estimation in time-series analysis , 1981 .

[16]  Rolf Isermann,et al.  Practical aspects of process identification , 1979, Autom..

[17]  Anthony J. Jakeman,et al.  An instrumental variable method for model order identification , 1980, Autom..

[18]  Anthony J. Jakeman,et al.  Instrumental Variable Algorithms for Multiple Input Systems Described by Multiple Transfer Functions , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  H. Akaike Statistical predictor identification , 1970 .

[20]  Peter E. Wellstead,et al.  An instrumental product moment test for model order estimation , 1978, Autom..

[21]  T. Bohlin On the problem of ambiguities in maximum likelihood identification , 1971 .

[22]  R. Bhansali,et al.  Some properties of the order of an autoregressive model selected by a generalization of Akaike∘s EPF criterion , 1977 .

[23]  R. C. St D-Optimality for Regression Designs: A Review , 1975 .

[24]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[25]  Lennart Ljung,et al.  Identification of processes in closed loop - identifiability and accuracy aspects , 1977, Autom..

[26]  Lennart Ljung,et al.  A theoretical analysis of recursive identification methods , 1978, Autom..

[27]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part I. Single input, single output systems , 1979 .

[28]  Heinz Unbehauen,et al.  Tests for determining model order in parameter estimation , 1974, Autom..

[29]  Peter Wellstead,et al.  Instrumental product moment model-order testing: extensions and application , 1982 .

[30]  Rv Jategaonkar,et al.  Determination of model order for dynamical system , 1982 .

[31]  J. Kiefer,et al.  Optimum Designs in Regression Problems , 1959 .

[32]  Walerian Kipiniak,et al.  Optimal Estimation, Identification, and Control , 1964 .

[33]  Raman K. Mehra,et al.  Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .

[34]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[35]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .