A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones

Several notions of spectral radius arise in the study of nonlinear order-preserving positively homogeneous self-maps of cones in Banach spaces. We give conditions that guarantee that all these notions lead to the same value. In particular, we give a Collatz-Wielandt type formula, which characterizes the growth rate of the orbits in terms of eigenvectors in the closed cone or super-eigenvectors in the interior of the cone. This characterization holds when the cone is normal and when a quasi-compactness condition, involving an essential spectral radius defined in terms of $k$-set-contractions, is satisfied. Some fixed point theorems for non-linear maps on cones are derived as intermediate results. We finally apply these results to show that non-linear spectral radii commute with respect to suprema and infima of families of order preserving maps satisfying selection properties.

[1]  M. Kreĭn,et al.  Linear operators leaving invariant a cone in a Banach space , 1950 .

[2]  G. Birkhoff Extensions of Jentzsch’s theorem , 1957 .

[3]  Garrett Birkhoff,et al.  Uniformly semi-primitive multiplicative processes , 1962 .

[4]  A. C. Thompson ON CERTAIN CONTRACTION MAPPINGS IN A PARTIALLY ORDERED VECTOR SPACE , 1963 .

[5]  森嶋 通夫 Equilibrium stability, and growth : a multi-sectoral analysis , 1964 .

[6]  G. Birkhoff,et al.  Integro-differential delay equations of positive type , 1966 .

[7]  Tosio Kato Perturbation theory for linear operators , 1966 .

[8]  Hans Schneider,et al.  The spectrum of a nonlinear operator associated with a matrix , 1969 .

[9]  R. Nussbaum The radius of the essential spectrum , 1970 .

[10]  Roger D. Nussbaum,et al.  A generalization of the Ascoli theorem and an application to functional differential equations , 1971 .

[11]  R. Nussbaum Some asymptotic fixed point theorems , 1972 .

[12]  P. Bushell Hilbert's metric and positive contraction mappings in a Banach space , 1973 .

[13]  J. Swetits,et al.  On a Class of Positive Linear Operators , 1973, Canadian Mathematical Bulletin.

[14]  A. Potter,et al.  APPLICATIONS OF HILBERT'S PROJECTIVE METRIC TO CERTAIN CLASSES OF NON-HOMOGENEOUS OPERATORS , 1977 .

[15]  R. Nussbaum Generalizing the fixed point index , 1977 .

[16]  Hans Jarchow,et al.  Topological Vector Spaces , 1981 .

[17]  N. Lloyd MEASURES OF NONCOMPACTNESS IN BANACH SPACES , 1981 .

[18]  Roger D. Nussbaum,et al.  The Fixed Point Index And Some Applications , 1985 .

[19]  P. Bushell,et al.  The Cayley-Hilbert metric and positive operators , 1986 .

[20]  R. Nussbaum Convexity and log convexity for the spectral radius , 1986 .

[21]  R. Nussbaum Hilbert's Projective Metric and Iterated Nonlinear Maps , 1988 .

[22]  R. Nussbaum Iterated nonlinear maps and Hilbert’s projective metric. II , 1989 .

[23]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[24]  V. Kolokoltsov On linear, additive, and homogeneous operators in idempotent analysis , 1992 .

[25]  Jonathan M. Borwein,et al.  Entropy minimization, DAD problems, and doubly stochastic kernels , 1994 .

[26]  Roger D. Nussbaum,et al.  Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations , 1994, Differential and Integral Equations.

[27]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[28]  P. Bougerol,et al.  Almost Sure Stabilizability and Riccati's Equation of Linear Systems with Random Parameters , 1995 .

[29]  S. M. Verduyn Lunel,et al.  Generalizations of the Perron-Frobenius Theorem for Nonlinear Maps , 1999 .

[30]  C. Sabot Existence and uniqueness of diffusions on finitely ramified self-similar fractals , 1997 .

[31]  Emil C. Popa A certain class of linear operators , 1997 .

[32]  U. Krause Concave Perron–Frobenius Theory and applications , 2001 .

[33]  S. Gaubert,et al.  The Perron-Frobenius theorem for homogeneous, monotone functions , 2001, math/0105091.

[34]  S. Sorin,et al.  An operator approach to zero-sum repeated games , 2001 .

[35]  John Mallet-Paret,et al.  Eigenvalues for a class of homogeneous cone maps arising from max-plus operators , 2002 .

[36]  Abraham Neyman,et al.  Stochastic games and nonexpansive maps , 2003 .

[37]  V. Metz,et al.  The short-cut test , 2005 .

[38]  Marianne Akian,et al.  Iteration of order preserving subhomogeneous maps on a cone , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  B. Perthame Transport Equations in Biology , 2006 .

[40]  John Mallet-Paret,et al.  Generalizing the Krein–Rutman theorem, measures of noncompactness and the fixed point index , 2010 .

[41]  Hongxiao Hu,et al.  Translation-invariant monotone systems II: Almost periodic/automorphic case , 2010 .

[42]  Bas Lemmens,et al.  Continuity of the cone spectral radius , 2011, 1107.4532.

[43]  J. Mallet-Paret,et al.  Inequivalent measures of noncompactness and the radius of the essential spectrum , 2011 .

[44]  Guillaume Vigeral,et al.  A maximin characterisation of the escape rate of non-expansive mappings in metrically convex spaces , 2010, Mathematical Proceedings of the Cambridge Philosophical Society.

[45]  J. Mallet-Paret,et al.  Inequivalent measures of noncompactness , 2011 .

[46]  S. Gaubert,et al.  Uniqueness of the fixed point of nonexpansive semidifferentiable maps , 2012, 1201.1536.

[47]  Bas Lemmens,et al.  Nonlinear Perron-Frobenius Theory , 2012 .

[48]  Alexander E. Guterman,et al.  Tropical Polyhedra are Equivalent to mean Payoff Games , 2009, Int. J. Algebra Comput..