Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting.

We present the use of Au bowtie nanoantenna arrays (BNAs) for highly efficient, multipurpose particle manipulation with unprecedented low input power and low-numerical aperture (NA) focusing. Optical trapping efficiencies measured are up to 20× the efficiencies of conventional high-NA optical traps and are among the highest reported to date. Empirically obtained plasmonic optical trapping "phase diagrams" are introduced to detail the trapping response of the BNAs as a function of input power, wavelength, polarization, particle diameter, and BNA array spacing (number density). Using these diagrams, parameters are chosen, employing strictly the degrees-of-freedom of the input light, to engineer specific trapping tasks including (1) dexterous, single-particle trapping and manipulation, (2) trapping and manipulation of two- and three-dimensional particle clusters, and (3) particle sorting. The use of low input power densities (power and NA) suggests that this bowtie nanoantenna trapping system will be particularly attractive for lab-on-a-chip technology or biological applications aimed at reducing specimen photodamage.

[1]  Tatsuya Shoji,et al.  Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon , 2010 .

[2]  Kin Hung Fung,et al.  Nonlinear optical response from arrays of Au bowtie nanoantennas. , 2011, Nano letters.

[3]  Edward A. Spiegel,et al.  Rayleigh‐Bénard Convection: Structures and Dynamics , 1998 .

[4]  M Mazilu,et al.  Optical deflection and sorting of microparticles in a near-field optical geometry. , 2008, Optics express.

[5]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[6]  Dieter Braun,et al.  Trapping of DNA by thermophoretic depletion and convection. , 2002, Physical review letters.

[7]  X. Gan,et al.  Three dimensional nanoparticle trapping enhanced by surface plasmon resonance. , 2010, Optics express.

[8]  David G. Grier,et al.  Evolution of a colloidal critical state in an optical pinning potential landscape , 2002 .

[9]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[10]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[11]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[12]  T. Nyström,et al.  A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. , 2007, Lab on a chip.

[13]  Kishan Dholakia,et al.  Extended organization of colloidal microparticles by surface plasmon polariton excitation , 2006 .

[14]  Christopher V. Rao,et al.  High-resolution, long-term characterization of bacterial motility using optical tweezers , 2009, Nature Methods.

[15]  Bo Sun,et al.  Theory of holographic optical trapping. , 2008, Optics express.

[16]  Frank J. Millero,et al.  Viscosity of water at various temperatures , 1969 .

[17]  Nikolay I Zheludev,et al.  The plasmon Talbot effect. , 2007, Optics express.

[18]  J. Golovchenko,et al.  Optical Matter: Crystallization and Binding in Intense Optical Fields , 1990, Science.

[19]  Miles J. Padgett,et al.  Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers , 2001 .

[20]  Steven M Block,et al.  Optical tweezers study life under tension. , 2011, Nature photonics.

[21]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[22]  Wolfgang Singer,et al.  Self-organized array of regularly spaced microbeads in a fiber-optical trap , 2003 .

[23]  Ke Xiao,et al.  Multidimensional optical fractionation of colloidal particles with holographic verification. , 2009, Physical review letters.

[24]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[25]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[26]  Kishan Dholakia,et al.  Optical forces near a nanoantenna , 2010 .

[27]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[28]  Michael J Ford,et al.  Optimization of plasmonic heating by gold nanospheres and nanoshells. , 2006, The journal of physical chemistry. B.

[29]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[30]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[31]  Yael Roichman,et al.  Holographic optical trapping. , 2006, Applied optics.

[32]  Lin Seng Ong,et al.  Simultaneous optical trapping of microparticles in multiple planes by a modified self-imaging effect on a chip , 2007 .

[33]  A. Lutich,et al.  Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. , 2011, Nano letters.

[34]  Bo Sun,et al.  Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. , 2008, Physical review letters.