New constraints on genesis of the Xiaoshan gold deposit, southern margin of the North China Craton: Evidenced from u-pb ages of monazite, in situ sulfur isotopes and trace element compositions of pyrite

[1]  Pengwang,et al.  Geochronology of the Shenjiayao gold deposit in the southern North China Craton: Constraints from in situ monazite U-Pb and mica Rb-Sr dating , 2023, Ore Geology Reviews.

[2]  Peng Wang,et al.  Recognition of the Xiayu intermediate-sulfidation epithermal Ag-Pb-Zn-Au(-Cu) mineralization in the East Qinling polymetallic ore belt, China: Constraints from geology and geochronology , 2023, Ore Geology Reviews.

[3]  U. Schwarz-Schampera,et al.  The Sukari Gold Deposit, Egypt: Geochemical and Geochronological Constraints on the Ore Genesis and Implications for Regional Exploration , 2022, Economic Geology.

[4]  R. Goldfarb,et al.  Orogenic gold: is a genetic association with magmatism realistic? , 2022, Mineralium Deposita.

[5]  Xiaowei Li,et al.  Textures, trace elements, sulfur, lead and He-Ar isotope analyses of pyrite: Implications for ore-forming processes and the origin of the Shenjiayao gold deposit, southern margin of the North China Craton , 2022, Ore Geology Reviews.

[6]  T. Zhao,et al.  Origin of the Shanggong Gold Deposit, the Southern Margin of the North China Craton: Constraints from Rb-Sr ages of Sericite, and Trace elements and Sulfur Isotope of Pyrite , 2022, Ore Geology Reviews.

[7]  N. Cook,et al.  Complementary Textural, Trace Element, and Isotopic Analyses of Sulfides Constrain Ore-Forming Processes for the Slate-Hosted Yuhengtang Au Deposit, South China , 2021, Economic Geology.

[8]  F. Molnár,et al.  Application of lithogeochemical and pyrite trace element data for the determination of vectors to ore in the Raja Au-Co prospect, northern Finland , 2021, Solid Earth.

[9]  Peng Liu,et al.  Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia , 2021 .

[10]  Kenneth H. Rubin,et al.  Effects of fluid boiling on Au and volatile element enrichment in submarine arc-related hydrothermal systems , 2021 .

[11]  R. Zhu,et al.  The big mantle wedge and decratonic gold deposits , 2021, Science China Earth Sciences.

[12]  J. Mao,et al.  PRECISE AGES FOR LODE GOLD MINERALIZATION IN THE XIAOQINLING GOLD FIELD, SOUTHERN MARGIN OF THE NORTH CHINA CRATON: NEW CONSTRAINTS FROM IN SITU U-Pb DATING OF HYDROTHERMAL MONAZITE AND RUTILE , 2020 .

[13]  Tiegang Li,et al.  Geochronology, fluid inclusions, and isotopic characteristics of the Xiaoshan gold deposit, Henan Province, China , 2020 .

[14]  J. Mao,et al.  The Qiyugou Au orefield — An intrusion-related gold system in the Eastern Qinling ore belt, China: Constraints from SIMS zircon U-Pb, molybdenite Re-Os, sericite 40Ar-39Ar geochronology, in-situ S-Pb isotopes, and mineralogy , 2020 .

[15]  Qingfei Wang,et al.  IN SITU DATING OF HYDROTHERMAL MONAZITE AND IMPLICATIONS FOR THE GEODYNAMIC CONTROLS ON ORE FORMATION IN THE JIAODONG GOLD PROVINCE, EASTERN CHINA , 2020 .

[16]  R. Walker,et al.  Destruction of the North China Craton in the Mesozoic , 2019, Annual Review of Earth and Planetary Sciences.

[17]  D. Morata,et al.  Geochemical and micro-textural fingerprints of boiling in pyrite , 2019, Geochimica et Cosmochimica Acta.

[18]  D. Fougerouse,et al.  Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit , 2019, Geochimica et Cosmochimica Acta.

[19]  S. Siegesmund,et al.  Geochronology of shear zones – A review , 2018, Earth-Science Reviews.

[20]  H. Fan,et al.  Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China Craton: implication for ore-forming processes , 2018, Contributions to Mineralogy and Petrology.

[21]  Li Tang,et al.  Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton: an overview from the central segment of the Trans-North China Orogen , 2018, Earth-Science Reviews.

[22]  M. Engi Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite , 2017 .

[23]  Simon P. Johnson,et al.  Using in situ SHRIMP U-Pb monazite and xenotime geochronology to determine the age of orogenic gold mineralization: An example from the Paulsens Mine, Southern Pilbara Craton , 2017 .

[24]  R. Large,et al.  Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration , 2016 .

[25]  Qingfei Wang,et al.  Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework , 2016 .

[26]  D. Paterson,et al.  Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite , 2016 .

[27]  D. Groves,et al.  Orogenic gold: Common or evolving fluid and metal sources through time , 2015 .

[28]  T. Monecke,et al.  Application of U-Th-Pb Phosphate Geochronology to Young Orogenic Gold Deposits: New Age Constraints on the Formation of the Grass Valley Gold District, Sierra Nevada Foothills Province, California , 2015 .

[29]  R. Zhu,et al.  Decratonic gold deposits , 2015, Science China Earth Sciences.

[30]  Shaocong Lai,et al.  Early Paleoproterozoic (2.45–2.20 Ga) magmatic activity during the period of global magmatic shutdown: Implications for the crustal evolution of the southern North China Craton , 2014 .

[31]  R. Ewing,et al.  The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits , 2014 .

[32]  J. Mavrogenes,et al.  Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea , 2014 .

[33]  N. Pant,et al.  Criteria to Distinguish Between Regional and Contact Zone Monazite - a Case Study from Proterozoic North Delhi Fold Belt (NDFB), India , 2013 .

[34]  N. Cook,et al.  Arsenopyrite-pyrite association in an orogenic gold ore: tracing mineralization history from textures and trace elements , 2013 .

[35]  R. Hough,et al.  Microstructural evolution and trace element mobility in Witwatersrand pyrite , 2013, Contributions to Mineralogy and Petrology.

[36]  U. Schaltegger,et al.  How Accurately Can We Date the Duration of Magmatic-Hydrothermal Events in Porphyry Systems? , 2013 .

[37]  P. Vasconcelos,et al.  Giant Mesozoic gold provinces related to the destruction of the North China craton , 2012 .

[38]  Guang Zhu,et al.  Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics , 2012 .

[39]  Chen Ling,et al.  Timing, scale and mechanism of the destruction of the North China Craton , 2011 .

[40]  Yunpeng Dong,et al.  Tectonic evolution of the Qinling orogen, China: Review and synthesis , 2011 .

[41]  D. Harlov,et al.  Resetting monazite ages during fluid-related alteration , 2011 .

[42]  B. Dai,et al.  Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca 1760Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton , 2010 .

[43]  P. Grundler,et al.  Petrogenetic significance of Au-Bi-Te-S associations: The example of Maldon, Central Victorian gold province, Australia , 2010 .

[44]  J. Mao,et al.  Late Jurassic–Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U–Pb ages and tectonic implications , 2010 .

[45]  G. Dipple,et al.  UNCLOAKING INVISIBLE GOLD: USE OF NANOSIMS TO EVALUATE GOLD, TRACE ELEMENTS, AND SULFUR ISOTOPES IN PYRITE FROM CARLIN-TYPE GOLD DEPOSITS , 2009 .

[46]  R. Large,et al.  Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits , 2009 .

[47]  R. Ewing,et al.  Decoupled geochemical behavior of As and Cu in hydrothermal systems , 2009 .

[48]  Guochun Zhao,et al.  SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton , 2009 .

[49]  D. Groves,et al.  Influence of structural setting on sulphur isotopes in Archean orogenic gold deposits, Eastern Goldfields Province, Yilgarn, Western Australia , 2009 .

[50]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[51]  J. Brugger,et al.  Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids , 2008 .

[52]  A. Du,et al.  Tectonic implications from Re–Os dating of Mesozoic molybdenum deposits in the East Qinling–Dabie orogenic belt , 2008 .

[53]  H. Lowers,et al.  Combined EPMA and SHRIMP Analyses of Xenotime to Interpret the Geochronological Record , 2008, Microscopy and Microanalysis.

[54]  F. Robert,et al.  Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia , 2007 .

[55]  B. Rasmussen,et al.  Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism , 2007 .

[56]  Yong Zheng,et al.  U Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen , 2006 .

[57]  F. Damian,et al.  Gold scavenged by bismuth melts: An example from Alpine shear-remobilizates in the Highiş Massif, Romania , 2006 .

[58]  S. Wilde,et al.  Nature and significance of the Early Cretaceous giant igneous event in eastern China , 2005 .

[59]  Hyun Koo Lee,et al.  Chemistry and origin of monazites from carbonatite dikes in the Hongcheon–Jaeun district, Korea , 2005 .

[60]  T. Zhao,et al.  Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton , 2004 .

[61]  M. P. Gorton,et al.  A TEXTURAL AND GEOCHEMICAL GUIDE TO THE IDENTIFICATION OF HYDROTHERMAL MONAZITE: CRITERIA FOR SELECTION OF SAMPLES FOR DATING EPIGENETIC HYDROTHERMAL ORE DEPOSITS , 2004 .

[62]  Jun Deng,et al.  Gold deposits in the Xiaoqinling–Xiong'ershan region, Qinling Mountains, central China , 2002 .

[63]  D. Groves,et al.  Orogenic gold and geologic time: a global synthesis , 2001 .

[64]  Peter A. Cawood,et al.  Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution , 2001 .

[65]  R. K. O’nions,et al.  Monazite chemical composition: some implications for monazite geochronology , 1999 .

[66]  Benren Zhang,et al.  Chemical composition of the continental crust as revealed by studies in East China , 1998 .

[67]  R. Walker,et al.  U-Pb Monazite Geochronology of Granitic Rocks from Maine: Implications for Late Paleozoic Tectonics in the Northern Appalachians , 1996, The Journal of Geology.

[68]  K. F. Cassidy,et al.  Temporal relationships of lode gold mineralization to accretion, magmatism, metamorphism and deformation - Archean to present: a review , 1994 .

[69]  I. Duncan,et al.  Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects , 1985 .

[70]  Shou‐ting Zhang,et al.  Origin and evolution of a porphyry-breccia system: Evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, China , 2021 .

[71]  Yunpeng Dong,et al.  Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China , 2016 .

[72]  Liang Ta LA-ICP-MS zircon U-Pb dating, geochemical features and geological implications of Xiaomeihe rock mass in Xiaoshan Mountain, western Henan Province , 2015 .

[73]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[74]  Lu Re Geochronology and geochemical features of Longwogou granite in Xiaoshan Mountain,western Henan Province,and their geological implications , 2014 .

[75]  L. Re LA-ICP-MS Zircon U-Pb Dating of the Houhe Granite and its Geologic Implication in Xiao Mountain, Western Henan Province , 2013 .

[76]  Mei-Fu Zhou,et al.  The Early Cretaceous Yangzhaiyu Lode Gold Deposit, North China Craton: A Link Between Craton Reactivation and Gold Veining , 2012 .

[77]  I. Clark Stable Isotope Geochemistry , 2011 .

[78]  Yu Jin U-Pb ages and Hf isotope compositions of zircons of Taihua Group in Xiaoqinling area,Shaanxi Province , 2011 .

[79]  Michael J. Jercinovic,et al.  Geochronology: Understanding Geologic Processes by Integrating Composition and Chronology , 2007 .

[80]  L. Srogi,et al.  Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite , 2006 .

[81]  Mao Jing Mesozoie large-scale metallogenic pulses in North China and corresponding geodynamic settings , 2005 .

[82]  F. Robert,et al.  Gold Deposits in Metamorphic Belts: Overview of Current Understanding,Outstanding Problems, Future Research, and Exploration Significance , 2003 .

[83]  T. Zhao,et al.  Discussion on the age of the Xiong'er Group in the Southern margin of the North China Craton , 2001 .

[84]  Deng Jian,et al.  Genetic type and metallogenic mechanism of Bankuan gold deposit in special reference to the studies of fluid inclusions and isotopes in minerals , 1994 .