Chemical and structural composition of black pigmented supragingival biofilm of bovines with periodontitis1

Saraiva J.R., Buso-Ramos M.M., Borsanelli A.C., Schweitzer C.M., Gaetti-Jardim Jr. E., Höfling J.F., Ramos T.N.M. & Dutra I.S. 2019. Chemical and structural composition of black pigmented supragingival biofilm of bovines with periodontitis. Pesquisa Veterinária Brasileira 39(12): 933-941. Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rua Clóvis Pestana 793, Cx. Postal 533, Jardim Dona Amélia, Araçatuba, SP 16050-680, Brazil. E-mail: iveraldo.dutra@unesp.br Bovine periodontitis is a multifactorial disease primarily associated with a potentially pathogenic microbiota housed in the oral biofilm of animals. Biofilms are organized structures, in which the constituents coexist in symbiosis, already described as a predisposing factor to periodontitis in other species. The objective of the present study was to characterize the structure and chemical aspects of the bovine black pigmented supragingival biofilm using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively, and determine its relationship with bovine periodontitis. Eleven premolar teeth from different animals were evaluated; five non-pigmented samples and six samples with black pigmented biofilms were initially submitted to SEM, and three areas of these samples were selected for EDS. The structure of the pigmented biofilm was more complex and irregular because of a higher content of mineral elements. The semi-quantitative EDS data indicated an association of iron (p<0.014) and magnesium (p<0.001) with the occurrence of periodontitis, whereas carbon, phosphorus, calcium, manganese, sodium, and potassium were not associated with the disease. Carbon (p<0.039), manganese (p<0.007), and iron (p<0.015) were associated with pigmentation, whereas phosphorus, calcium, and magnesium were not associated with it. Spearman correlation test showed the relationships between calcium and phosphorus, and iron and silicon. The strong association of iron in the pigmented supragingival biofilm and with the occurrence of periodontitis suggests the presence of microorganisms that use this element in their metabolism and that are also associated with bovine periodontitis. This study suggests that the pigmented deposits in the crown of the teeth of cattle are an true PVB-6352 LD Chemical and structural composition of black pigmented supragingival biofilm of bovines with periodontitis1 Júlia Rebecca Saraiva2 , Marcelle Marie B. Ramos3, Ana Carolina Borsanelli4, Christiane M. Schweitzer5, Elerson Gaetti-Jardim Júnior6, José Francisco Höfling7, Thamiris Naiasha M. Ramos2 and Iveraldo S. Dutra8*  1 Received on March 26, 2019. Accepted for publication on June 6, 2019. 2 Graduate Program in Veterinary Medicine, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho” (Unesp), Via de Acesso Professor Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil. E-mail: julia_beca@hotmail.com 3 Collaborating Researcher of the Graduate Program in Oral-Dental Biology, Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (Unicamp), Avenida Limeira 901, Areião, Piracicaba, SP 13414-903, Brazil. E-mail: marcellebuso@gmail.com 4 Postdoctoral in Veterinary Medicine, Departamento de Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, Universidade Estadual Paulista “Júlio de Mesquita Filho” (Unesp), Campus de Araçatuba, Rua Clóvis Pestana 793, Jardim Dona Amélia, Araçatuba, SP 16050-680, Brazil. E-mail: carol_borsanelli@yahoo.com.br Chemical and structural composition of black pigmented supragingival biofilm of bovines

[1]  G. Svensäter,et al.  Parvimonas micra stimulates expression of gingipains from Porphyromonas gingivalis in multi-species communities. , 2019, Anaerobe.

[2]  K. Nagano,et al.  Distribution of Porphyromonas gingivalis fimA and mfa1 fimbrial genotypes in subgingival plaques , 2018, PeerJ.

[3]  B. Brandt,et al.  Microbiomes associated with bovine periodontitis and oral health. , 2018, Veterinary microbiology.

[4]  A. Nobbs,et al.  Interspecies dynamics among bacteria associated with canine periodontal disease , 2018, Molecular oral microbiology.

[5]  N. Lang,et al.  Dental calculus: the calcified biofilm and its role in disease development , 2018, Periodontology 2000.

[6]  D. Bosshardt,et al.  The periodontal pocket: pathogenesis, histopathology and consequences. , 2018, Periodontology 2000.

[7]  V. Krzyžánek,et al.  The Application of Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) in Ancient Dental Calculus for the Reconstruction of Human Habits , 2016, Microscopy and Microanalysis.

[8]  S. D. Agostinho Periodontite e desgaste dentário em ovinos , 2017 .

[9]  M. Riggio,et al.  Black-pigmented anaerobic bacteria associated with ovine periodontitis. , 2017, Veterinary microbiology.

[10]  P. Marsh,et al.  Dental biofilm: ecological interactions in health and disease , 2017, Journal of clinical periodontology.

[11]  Ana Carolina Borsanelli Genotipagem de bactérias anaeróbias associadas às lesões da periodontite bovina , 2017 .

[12]  P. L. Campello Periodontite e desgaste dentário em cabras leiteiras , 2017 .

[13]  D. Lappin,et al.  Periodontal lesions in slaughtered cattle in the west of Scotland , 2016, Veterinary Record.

[14]  E. G. Júnior,et al.  Presence of Porphyromonas and Prevotella species in the oral microflora of cattle with periodontitis , 2015 .

[15]  P. Myer,et al.  Rumen Microbiome from Steers Differing in Feed Efficiency , 2015, PloS one.

[16]  E. G. Júnior,et al.  Treponema denticola in microflora of bovine periodontitis , 2015 .

[17]  G. Hajishengallis,et al.  Periodontitis: from microbial immune subversion to systemic inflammation , 2014, Nature Reviews Immunology.

[18]  R. R. Lima,et al.  Avaliação comparativa da ultraestrutura e propriedades físicas do esmalte bovino, bubalino e humano , 2014 .

[19]  F. B. Teixeira,et al.  Morphology of the Dentin Structure of Sloths Bradypus tridactylus: A Light and Scanning Electron Microscopy Investigation , 2013, Anatomia, histologia, embryologia.

[20]  D. Byrne,et al.  Evidence of mutualism between two periodontal pathogens: co-operative haem acquisition by the HmuY haemophore of Porphyromonas gingivalis and the cysteine protease interpain A (InpA) of Prevotella intermedia. , 2013, Molecular oral microbiology.

[21]  S. Báo,et al.  Mineral trioxide aggregate-based endodontic sealer stimulates hydroxyapatite nucleation in human osteoblast-like cell culture. , 2012, Journal of endodontics.

[22]  M. J. Ávila-Campos,et al.  Subgingival microbiota from Cebus apella (capuchin monkey) with different periodontal conditions. , 2012, Anaerobe.

[23]  Annette Moter,et al.  Dental plaque biofilms: communities, conflict and control. , 2011, Periodontology 2000.

[24]  Robert J. Palmer,et al.  Oral multispecies biofilm development and the key role of cell–cell distance , 2010, Nature Reviews Microbiology.

[25]  J. Lewis Metal uptake in host-pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms. , 2010, Periodontology 2000.

[26]  Y. Abiko,et al.  Characterization of hemin-binding protein 35 (HBP35) in Porphyromonas gingivalis: its cellular distribution, thioredoxin activity and role in heme utilization , 2010, BMC Microbiology.

[27]  K. Hojo,et al.  Bacterial Interactions in Dental Biofilm Development , 2009, Journal of dental research.

[28]  A. Haffajee,et al.  Intra-oral microbial profiles of beagle dogs assessed by checkerboard DNA-DNA hybridization using human probes. , 2008, Veterinary microbiology.

[29]  E. Muñoz-Elías,et al.  Carbon metabolism of intracellular bacteria , 2006, Cellular microbiology.

[30]  D. Elliott,et al.  Cultivable Oral Microbiota of Domestic Dogs , 2005, Journal of Clinical Microbiology.

[31]  S. Holt,et al.  Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. , 2005, Periodontology 2000.

[32]  S. Kaufmann,et al.  Iron and microbial infection , 2005, Nature Reviews Microbiology.

[33]  T. Olczak,et al.  Iron and heme utilization in Porphyromonas gingivalis. , 2005, FEMS microbiology reviews.

[34]  J. Smalley,et al.  The haem pigment of the oral anaerobes Prevotella nigrescens and Prevotella intermedia is composed of iron(III) protoporphyrin IX in the monomeric form. , 2003, Microbiology.

[35]  Matthias Epple,et al.  Biological and medical significance of calcium phosphates. , 2002, Angewandte Chemie.

[36]  Ye Jin,et al.  Supragingival calculus: formation and control. , 2002, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[37]  Robert J. Palmer,et al.  Communication among Oral Bacteria , 2002, Microbiology and Molecular Biology Reviews.

[38]  S. Socransky,et al.  Dental biofilms: difficult therapeutic targets. , 2002, Periodontology 2000.

[39]  B. Ingham Abattoir survey of dental defects in cull cows , 2001, Veterinary Record.

[40]  I. S. Dutra,et al.  Modificação da microbiota associada às lesões peridentárias da "cara inchada" em bezerros transferidos para área indene , 2000 .

[41]  J. Smalley,et al.  The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the mu-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. , 1998, The Biochemical journal.

[42]  G. Walker,et al.  The roles of magnesium in biotechnology. , 1994, Critical reviews in biotechnology.

[43]  G. Gadd Metals and microorganisms: a problem of definition. , 1992, FEMS microbiology letters.

[44]  J. M. ten Cate,et al.  The Effect of Silicic Acid on Calcium Phosphate Precipitation , 1989, Journal of dental research.

[45]  G. Isacsson,et al.  A quantitative microradiographic study of mineral content of supragingival and subgingival dental calculus. , 1984, Scandinavian journal of dental research.

[46]  L. Hammarström,et al.  A comparative, scanning electron microscopic study of supragingival and subgingival calculus. , 1980, Journal of periodontology.

[47]  S. Socransky,et al.  Relationship of Bacteria to the Etiology of Periodontal Disease , 1970, Journal of dental research.

[48]  P. Grøn,et al.  Human dental calculus. Inorganic chemical and crystallographic composition. , 1967, Archives of oral biology.