Dissociations between spatial-attentional processes within parietal cortex: insights from hybrid spatial cueing and change detection paradigms

Spatial cueing has been used by many different groups under multiple forms to study spatial attention processes. We will present evidence obtained in brain-damaged patients and healthy volunteers using a variant of this paradigm, the hybrid spatial cueing paradigm, which, besides single-target trials with valid and invalid cues, also contains trials where a target is accompanied by a contralateral competing stimulus (competition trials). This allows one to study invalidity-related processes and selection between competing stimuli within the same paradigm. In brain-damaged patients, lesions confined to the intraparietal sulcus result in contralesional attentional deficits, both during competition and invalid trials, according to a pattern that does not differ from that observed following inferior parietal lesions. In healthy volunteers, however, selection between competing stimuli and invalidity-related processes are partially dissociable, the former relying mainly on cytoarchitectonic areas hIP1-3 in the intraparietal sulcus, the latter on cytoarchitectonic area PF in the right inferior parietal lobule. The activity profile in more posterior inferior parietal areas PFm and PGa, does not distinguish between both types of trials. The functional account for right PF and adjacent areas is further constrained by the activity profile observed during other experimental paradigms. In a change detection task with variable target and distracter set size, for example, these inferior parietal areas show highest activity when the stimulus array consists of only one single target, while the intraparietal sulcus show increased activity as the array contains more targets and distracters. Together, these findings lead us to the hypothesis that right PF functions as a target singleton detector, which is activated when a target stands out from the background, referring both to the temporal background (expectancy) and the momentaneous background (stimulus-driven saliency).

[1]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[2]  G A Orban,et al.  Attentional responses to unattended stimuli in human parietal cortex. , 2005, Brain : a journal of neurology.

[3]  J. Duncan The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour , 2010, Trends in Cognitive Sciences.

[4]  M. Chun,et al.  Selecting and perceiving multiple visual objects , 2009, Trends in Cognitive Sciences.

[5]  M. Rushworth,et al.  Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks. , 2012, Cerebral cortex.

[6]  Daniel J. Mitchell,et al.  Flexible, capacity-limited activity of posterior parietal cortex in perceptual as well as visual short-term memory tasks. , 2008, Cerebral cortex.

[7]  M. Corbetta,et al.  Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke , 2009, Annals of neurology.

[8]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[9]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[10]  Mark D'Esposito,et al.  Focal Brain Lesions to Critical Locations Cause Widespread Disruption of the Modular Organization of the Brain , 2012, Journal of Cognitive Neuroscience.

[11]  Ronald Peeters,et al.  Convergence between Lesion-Symptom Mapping and Functional Magnetic Resonance Imaging of Spatially Selective Attention in the Intact Brain , 2008, The Journal of Neuroscience.

[12]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[13]  Maurizio Corbetta,et al.  Anatomical Segregation of Visual Selection Mechanisms in Human Parietal Cortex , 2013, The Journal of Neuroscience.

[14]  Stefan Pollmann,et al.  Deficits in Subprocesses of Visual Feature Search after Frontal, Parietal, and Temporal Brain Lesions—A Modeling Approach , 2010, Journal of Cognitive Neuroscience.

[15]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[16]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[17]  Patrick Dupont,et al.  Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. , 2011, Brain : a journal of neurology.

[18]  T. A. Kelley,et al.  Cortical mechanisms for shifting and holding visuospatial attention. , 2008, Cerebral cortex.

[19]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[20]  Chris Rorden,et al.  Non-spatially lateralized mechanisms in hemispatial neglect , 2003, Nature Reviews Neuroscience.

[21]  M. Chun,et al.  Dissociable neural mechanisms supporting visual short-term memory for objects , 2006, Nature.

[22]  Jöran Lepsien,et al.  The Timing of Neural Activity during Shifts of Spatial Attention , 2009, Journal of Cognitive Neuroscience.

[23]  G. Engel,et al.  Neuropsychology , 1994, Schizophrenia Research.

[24]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[25]  S. Kastner,et al.  Shifting Attentional Priorities: Control of Spatial Attention through Hemispheric Competition , 2013, The Journal of Neuroscience.

[26]  Edward K. Vogel,et al.  The capacity of visual working memory for features and conjunctions , 1997, Nature.

[27]  D. Gitelman,et al.  Location- or Feature-Based Targeting of Peripheral Attention , 2001, NeuroImage.

[28]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[29]  M. Mesulam,et al.  Remapping attentional priorities: differential contribution of superior parietal lobule and intraparietal sulcus. , 2007, Cerebral cortex.

[30]  Claus Bundesen,et al.  Generalizing parametric models by introducing trial-by-trial parameter variability: The case of TVA , 2011 .

[31]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[32]  M. Mesulam,et al.  Right cerebral dominance in spatial attention. Further evidence based on ipsilateral neglect. , 1987, Archives of neurology.

[33]  John T Wixted,et al.  Visual Working Memory Capacity and the Medial Temporal Lobe , 2012, The Journal of Neuroscience.

[34]  R. Luján Fiber Pathways of the Brain, J.D. Schmahmann, D.N. Pandya (Eds.). Oxford University Press (2006), ISBN: 0-19-510423-4 , 2008 .

[35]  Ronald R. Peeters,et al.  Attentional priorities and access to short-term memory: Parietal interactions , 2012, NeuroImage.

[36]  Armin Schnider,et al.  The attention network of the human brain: Relating structural damage associated with spatial neglect to functional imaging correlates of spatial attention , 2011, Neuropsychologia.

[37]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[38]  C. Bundesen,et al.  Principles of Visual Attention: Linking Mind and Brain , 2008 .

[39]  Karl J. Friston,et al.  Deconstructing the Architecture of Dorsal and Ventral Attention Systems with Dynamic Causal Modeling , 2012, The Journal of Neuroscience.

[40]  Biyu J. He,et al.  Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect , 2007, Neuron.

[41]  D. Gitelman,et al.  Functional Specificity of Superior Parietal Mediation of Spatial Shifting , 2001, NeuroImage.

[42]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[43]  V Menon,et al.  Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. , 2009, Cerebral cortex.

[44]  Marco Zorzi,et al.  Normal and Impaired Reflexive Orienting of Attention after Central Nonpredictive Cues , 2009, Journal of Cognitive Neuroscience.

[45]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[46]  Céline R. Gillebert,et al.  Spatial attention deficits in humans: The critical role of superior compared to inferior parietal lesions , 2012, Neuropsychologia.

[47]  J. Jay Todd,et al.  Capacity limit of visual short-term memory in human posterior parietal cortex , 2004, Nature.

[48]  Maro G. Machizawa,et al.  Capacity limit of visual short-term memory in human posterior parietal cortex , 2004 .

[49]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[50]  Clayton E. Curtis,et al.  Maps of space in human frontoparietal cortex , 2013, Journal of Physiology-Paris.

[51]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[52]  Patrick Dupont,et al.  Spatial stimulus configuration and attentional selection: extrastriate and superior parietal interactions. , 2013, Cerebral cortex.

[53]  J. Decety,et al.  The Role of the Right Temporoparietal Junction in Social Interaction: How Low-Level Computational Processes Contribute to Meta-Cognition , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[54]  S. Yantis,et al.  Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. , 2007, Cerebral cortex.

[55]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[56]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[57]  A. Dale,et al.  Functional Parcellation of Attentional Control Regions of the Brain , 2004, Journal of Cognitive Neuroscience.

[58]  R. Ptak The Frontoparietal Attention Network of the Human Brain , 2012, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[59]  D. Somers,et al.  Hemispheric Asymmetry in Visuotopic Posterior Parietal Cortex Emerges with Visual Short-Term Memory Load , 2010, The Journal of Neuroscience.

[60]  S. Yantis,et al.  Control of Attention Shifts between Vision and Audition in Human Cortex , 2004, The Journal of Neuroscience.

[61]  Patrick Dupont,et al.  Cytoarchitectonic mapping of attentional selection and reorienting in parietal cortex , 2013, NeuroImage.

[62]  Céline R. Gillebert,et al.  Parcellation of parietal cortex: Convergence between lesion-symptom mapping and mapping of the intact functioning brain , 2009, Behavioural Brain Research.

[63]  F. J. Friedrich,et al.  Spatial attention deficits in humans: a comparison of superior parietal and temporal-parietal junction lesions. , 1998, Neuropsychology.

[64]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[65]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[66]  Michael A. Silver,et al.  Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex , 2010, NeuroImage.

[67]  Kaustubh Supekar,et al.  Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. , 2010, Cerebral cortex.

[68]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[69]  Nadim Joni Shah,et al.  Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques , 2011, NeuroImage.

[70]  Morris Moscovitch,et al.  Cognitive contributions of the ventral parietal cortex: an integrative theoretical account , 2012, Trends in Cognitive Sciences.