On separation of minimal Riesz energy points on spheres in Euclidean spaces

Let Sd denote the unit sphere in the Euclidean space Rd + 1 (d ≥ 1). Let N be a natural number (N≥ 2), and let ωN := {x1,...,xN} be a collection of N distinct points on Sd on which the minimal Riesz s-energy is attained. In this paper, we show that the points x1,...,xN are well-separated for the cases d - 1 ≤ s < d.

[1]  E. Saff,et al.  Asymptotics for minimal discrete energy on the sphere , 1995 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  C. Chui,et al.  Approximation theory X : abstract and classical analysis , 2002 .

[4]  Steven B. Damelin,et al.  Energy functionals, numerical integration and asymptotic equidistribution on the sphere , 2003, J. Complex..

[5]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[6]  Frits Beukers,et al.  SPECIAL FUNCTIONS (Encyclopedia of Mathematics and its Applications 71) , 2001 .

[7]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[8]  Mario Götz,et al.  On the Riesz energy of measures , 2003, J. Approx. Theory.

[9]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[10]  E. Saff,et al.  Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.

[11]  Edward B. Saff,et al.  Electrons on the Sphere , 1995 .

[12]  Björn E. J. Dahlberg,et al.  On the distribution of Fekete points , 1978 .

[13]  Luis Salinas,et al.  Computational Methods and Function Theory , 1990 .

[14]  Artūras Dubickas On the maximal product of distances between points on a sphere , 1996 .

[15]  M. Götz,et al.  On the Distribution of Weighted Extremal Points on a Surface in $$\mathbb{R}^d ,d \geqslant 3$$ , 2000 .

[16]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[17]  B. L. Waerden,et al.  Lagerung von Punkten auf der Kugel , 1951 .

[18]  Peter D Dragnev,et al.  On the Separation of Logarithmic Points on the Sphere , 2002 .

[19]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[20]  Johann S. Brauchart,et al.  About the second term of the asymptotics for optimal Riesz energy on the sphere in the potential-theoretical case , 2006 .

[21]  V. Maymeskul,et al.  Asymptotics for Minimal Discrete Riesz Energy on Curves in ℝ d , 2004, Canadian Journal of Mathematics.