Analysis and Visualization of the Contact Force Solution Space for Multi-Limbed Mobile Robots With Three Feet Contact

A new analytical method for determining, describing, and visualizing the solution space for the contact force distribution of multi-limbed robots with three feet in contact with the environment in three-dimensional space is presented. The foot contact forces are first resolved into strategically defined foot contact force components to decouple them for simplifying the solution process, and then the static equilibrium equations are applied to find certain contact force components and the relationship between the others. Using the friction cone equation at each foot contact point and the known contact force components, the problem is transformed into a geometrical one to find the ranges of contact forces and the relationship between them that satisfy the friction constraint. Using geometric properties of the friction cones and by simple manipulation of their conic sections, the whole solution space which satisfies the static equilibrium and friction constraints at each contact point can be found. Two representation schemes, the “force space graph” and the “solution volume representation,” are developed for describing and visualizing the solution space which gives an intuitive visual map of how well the solution space is formed for the given conditions of the system.© 2003 ASME