Estimation of Kinetic Parameters for Nonisothermal Food Processes

This work deals with the hypothesis that kinetic parameters for nonisothermal processes can be reliably obtained using a 1-step method, Parameters were estimated for 3 typical processes: (1) no residence time distribution (RTD) (2) first-order reaction with RRTD, and (3) nth-order reaction with RTD. When nonisothermal processes were approximated isothermally, k and ΔE were underestimated 80% to 3 orders o0f magnitude; and 30% to 1 order of magnitude,respectively. Reaction order was overestimated by up to 0.81. Therefore, accounting for thermal history and RTD in critical to obtain accurate estimates of Kinetic parameters. The 1-step method was also used to solve for equivalent isothermal temperatures and times for an arbitrary nonisothermal process.

[1]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[2]  P. Ainsworth,et al.  Extrusion of tarhana : effect of operating variables on starch gelatinization , 1996 .

[3]  Paul Ainsworth,et al.  Influence of process variables on residence time distribution and flow patterns of tarhana in a twin-screw extruder , 1997 .

[4]  Stephen G. Haralampu,et al.  ESTIMATION OF ARRHENIUS MODEL PARAMETERS USING THREE LEAST SQUARES METHODS , 1985 .

[5]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[6]  K. Swartzel Arrhenius Kinetics as Applied to Product Constituent Losses in Ultra High Temperature Processing , 1982 .

[7]  K. Swartzel,et al.  Kinetics of Color Change of Grape Juice Generated using Linearly Increasing Temperature , 1989 .

[8]  H. Ramaswamy,et al.  Degradation Kinetics of Thiamine in Aqueous Systems at High Temperatures , 1990 .

[9]  M. Hanna,et al.  Kinetics of Starch Gelatinization During Extrusion Cooking , 1987 .

[10]  K. Swartzel,et al.  Kinetic Parameter Evaluation with Linearly Increasing Temperature Profiles: Integral Methods , 1991 .

[11]  Levente L. Diosady,et al.  Model for Gelatinization of Wheat Starch in a Twin‐Screw Extruder , 1993 .

[12]  B. Welt,et al.  Irradiation as a Pretreatment to Thermal Processing , 2001 .

[13]  An-I Yeh,et al.  Kinetics of Phase Transition of Waxy Corn Starch at Extrusion Temperatures and Moisture Contents , 1989 .

[14]  R. Altomare,et al.  An Analysis of Residence Time Distribution Patterns in A Twin Screw Cooking Extruder , 1986, Biotechnology progress.

[15]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[16]  P. Carroad,et al.  Kinetics of Corn Meal Gelatinization at High Temperature and Low Moisture , 1987 .

[17]  J. Torres,et al.  An unsteady-state method to determine kinetic parameters for heat inactivation of quality factors: Conduction-heated foods , 1993 .

[18]  M. Boekel,et al.  Statistical aspects of kinetic modeling for food science problems. , 1996 .

[19]  R. W. Hornbeck Numerical Methods , 1975 .

[20]  B. Welt,et al.  Iterative Method for Kinetic Parameter Estimation from Dynamic Thermal Treatments , 1997 .

[21]  P R Nelson Stability prediction using the Arrhenius model. , 1983, Computer programs in biomedicine.

[22]  Cristina L. M. Silva,et al.  Alicyclobacillus acidoterrestris spores as a target for Cupuaçu (Theobroma grandiflorum) nectar thermal processing: kinetic parameters and experimental methods. , 2002, International journal of food microbiology.

[23]  Fernanda A. R. Oliveira,et al.  Design of experiments for improving the precision in the estimation of diffusion parameters under isothermal and non‐isothermal conditions , 2001 .

[24]  S. Wang,et al.  Shear Induced Starch Conversion During Extrusion , 1994 .

[25]  J. Herrmann,et al.  Zur thermischen Zerstörung von Thiamin in Abhängigkeit vom Feuchtigkeitsgehalt der Lebensmittel unter besonderer Berücksichtigung von Mehlprodukten , 1966 .

[26]  T. O. Kvålseth Cautionary Note about R 2 , 1985 .

[27]  M. Hendrickx,et al.  Formation kinetics of hydroxymethylfurfural, lactulose and furosine in milk heated under isothermal and non-isothermal conditions , 2001, Journal of Dairy Research.

[28]  Fernanda A. R. Oliveira,et al.  Optimal experimental design for estimating the kinetic parameters of processes described by the first-order Arrhenius model under linearly increasing temperature profiles , 2000 .

[29]  David Mautner Himmelblau,et al.  Process analysis by statistical methods , 1970 .

[30]  A. Varma,et al.  Kinetics of high-temperature reaction in titanium-nitrogen system: nonisothermal conditions , 2001 .

[31]  M. Hendrickx,et al.  Inactivation kinetics of alkaline phosphatase and lactoperoxidase, and denaturation kinetics of beta-lactoglobulin in raw milk under isothermal and dynamic temperature conditions. , 2001, The Journal of dairy research.

[32]  K. Swartzel,et al.  Modeling thermal processes using the equivalent point method , 1990 .

[33]  A. Calvelo,et al.  Kinetics of Starch Gelatinization in Potato , 1985 .

[34]  James F. Steffe,et al.  MODELING RHEOLOGICAL BEHAVIOR OF GELATINIZING STARCH SOLUTIONS USING MIXER VISCOMETRY DATA , 1990 .

[35]  K. Swartzel Equivalent-point method for thermal evaluation of continuous-flow systems , 1986 .

[36]  K. Swartzel,et al.  Determination of Kinetic Parameters using Linearly Increasing Temperature , 1989 .