Quasi-polynomial time approximation schemes for packing and covering problems in planar graphs

We consider two optimization problems in planar graphs. In {Maximum Weight Independent Set of Objects} we are given a graph G and a family D of {objects}, each being a connected subgraph of G with a prescribed weight, and the task is to find a maximum-weight subfamily of D consisting of pairwise disjoint objects. In {Minimum Weight Distance Set Cover} we are given an edge-weighted graph G, two sets D,C of vertices of G, where vertices of D have prescribed weights, and a nonnegative radius r. The task is to find a minimum-weight subset of D such that every vertex of C is at distance at most r from some selected vertex. Via simple reductions, these two problems generalize a number of geometric optimization tasks, notably {Maximum Weight Independent Set} for polygons in the plane and {Weighted Geometric Set Cover} for unit disks and unit squares. We present {quasi-polynomial time approximation schemes} (QPTASs) for both of the above problems in planar graphs: given an accuracy parameter epsilon>0 we can compute a solution whose weight is within multiplicative factor of (1+epsilon) from the optimum in time 2^{poly(1/epsilon,log |D|)}* n^{O(1)}, where n is the number of vertices of the input graph. Our main technical contribution is to transfer the techniques used for recursive approximation schemes for geometric problems due to Adamaszek, Har-Peled, and Wiese [Adamaszek and Wiese, 2013; Adamaszek and Wiese, 2014; Sariel Har-Peled, 2014] to the setting of planar graphs. In particular, this yields a purely combinatorial viewpoint on these methods.