Gemini and Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in ω Centauri

The globular cluster ω Centauri is one of the largest and most massive members of the galactic system. However, its classification as a globular cluster has been challenged making it a candidate for being the stripped core of an accreted dwarf galaxy; this together with the fact that it has one of the largest velocity dispersions for star clusters in our galaxy makes it an interesting candidate for harboring an intermediate-mass black hole. We measure the surface brightness profile from integrated light on an HST ACS image of the center, and find a central power-law cusp of logarithmic slope –0.08. We also analyze Gemini GMOS-IFU kinematic data for a 5'' × 5'' field centered on the nucleus of the cluster, as well as for a field 14'' away. We detect a clear rise in the velocity dispersion from 18.6 km s−1 at 14'' to 23 km s−1 in the center. A rise in the velocity dispersion could be due to a central black hole, a central concentration of stellar remnants, or a central orbital structure that is radially biased. We discuss each of these possibilities. An isotropic, spherical dynamical model implies a black hole mass of 4.0−1.0+0.75 × 104 M☉, and excludes the no black hole case at greater than 99% significance. We have also run flattened, orbit-based models and find similar results. While our preferred model is the existence of a central black hole, detailed numerical simulations are required to confidently rule out the other possibilities.

[1]  Luis C. Ho,et al.  Radio Emission from the Intermediate-Mass Black Hole in the Globular Cluster G1 , 2007, 0704.1458.

[2]  P. Hut,et al.  Star clusters with primordial binaries – III. Dynamical interaction between binaries and an intermediate-mass black hole , 2006, astro-ph/0610342.

[3]  David Pooley,et al.  X-Rays from the Globular Cluster G1: Intermediate-Mass Black Hole or Low-Mass X-Ray Binary? , 2006, astro-ph/0605049.

[4]  K. Gebhardt,et al.  Surface Brightness Profiles of Galactic Globular Clusters from Hubble Space Telescope Images , 2006, astro-ph/0604251.

[5]  Caltech,et al.  Opening angles, Lorentz factors and confinement of X-ray binary jets , 2006, astro-ph/0601482.

[6]  R. V. D. Bosch,et al.  The Dynamical Mass-to-Light Ratio Profile and Distance of the Globular Cluster M15 , 2005, astro-ph/0512503.

[7]  F. Ferraro,et al.  The Pure Noncollisional Blue Straggler Population in the Giant Stellar System ω Centauri , 2005, astro-ph/0510280.

[8]  E. Verolme,et al.  The dynamical distance and intrinsic structure of the globular cluster ω Centauri , 2005, astro-ph/0509228.

[9]  R. A. Reijns,et al.  Radial velocities in the globular cluster ω Centauri , 2005, astro-ph/0509227.

[10]  L. Ho,et al.  An Intermediate-Mass Black Hole in the Globular Cluster G1: Improved Significance from New Keck and Hubble Space Telescope Observations , 2005, astro-ph/0508251.

[11]  L. Ho,et al.  Dwarf Seyfert 1 Nuclei and the Low-Mass End of the MBH-σ Relation , 2004, astro-ph/0412575.

[12]  P. Hut,et al.  Which Globular Clusters Contain Intermediate-Mass Black Holes? , 2004, astro-ph/0410597.

[13]  L. Ho,et al.  Masses of Star Clusters in the Nuclei of Bulgeless Spiral Galaxies , 2004, astro-ph/0409216.

[14]  Matthias Steinmetz,et al.  Accretion relics in the solar neighbourhood : Debris from ωCen's parent galaxy , 2004, astro-ph/0408567.

[15]  S. Tremaine,et al.  Kinematics of 10 Early-Type Galaxies from Hubble Space Telescope and Ground-based Spectroscopy , 2003, astro-ph/0306464.

[16]  F. Ferraro,et al.  The multiple stellar population in ω Centauri: spatial distribution and structural properties , 2003, astro-ph/0305524.

[17]  P. Hut,et al.  A Dynamical Model for the Globular Cluster G1 , 2003, astro-ph/0301469.

[18]  D. Heggie,et al.  Parameters of core collapse , 2003, astro-ph/0301166.

[19]  S. Tremaine,et al.  Axisymmetric Dynamical Models of the Central Regions of Galaxies , 2002, astro-ph/0209483.

[20]  J. Gerssen,et al.  Addendum: Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. II. Kinematic Analysis and Dynamical Modeling [Astron. J. 124, 3270 (2002)] , 2002, astro-ph/0210158.

[21]  J. Makino,et al.  On the Central Structure of M15 , 2002, astro-ph/0210133.

[22]  J. Gerssen,et al.  Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. II. Kinematic Analysis and Dynamical Modeling , 2002, astro-ph/0209315.

[23]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[24]  T. Lauer,et al.  M33: A Galaxy with No Supermassive Black Hole , 2001, astro-ph/0107135.

[25]  S. Majewski,et al.  Orbits of Globular Clusters in the Outer Galaxy: NGC 7006 , 2001, astro-ph/0106259.

[26]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[27]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[28]  K. Gebhardt,et al.  Canada-France-Hawaii Telescope Adaptive Optics Observations of the Central Kinematics in M15 , 1999, astro-ph/9912172.

[29]  S. Tremaine,et al.  Axisymmetric, Three-Integral Models of Galaxies: A Massive Black Hole in NGC 3379 , 1999, astro-ph/9912026.

[30]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[31]  Eyal Maoz Dynamical Constraints on Alternatives to Supermassive Black Holes in Galactic Nuclei , 1997, astro-ph/9710309.

[32]  K. Freeman,et al.  The Giant Branch of ω Centauri: The Dependence of Kinematics on Abundance , 1997 .

[33]  G. Meylan,et al.  Radial velocities of southern stars obtained with the photoelectric scanner coravel, VIII. Observations of 471 giant stars in omega centauri. , 1997 .

[34]  G. Meylan,et al.  The stellar dynamics of omega centauri. , 1996, astro-ph/9612184.

[35]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[36]  J. Makino Postcollapse Evolution of Globular Clusters , 1996, astro-ph/9608160.

[37]  K. Freeman,et al.  The Giant Branch of omega Centauri. V. The Calcium Abundance Distribution , 1996 .

[38]  S. Tremaine,et al.  The Centers of Early-Type Galaxies with HST III: Non-Parametric Recovery of Stellar Luminosity Distributions , 1996, astro-ph/9604092.

[39]  N. Suntzeff,et al.  The abundance spread among giants and subgiants in the globular cluster omega centauri , 1996, astro-ph/9601013.

[40]  K. Gebhardt,et al.  Nonparametric Dynamical Analysis of Globular Clusters: M15, 47 TUC, NGC 362, and NGC 3201 , 1994, astro-ph/9408086.

[41]  Scott Trager,et al.  Catalogue of Galactic globular-cluster surface-brightness profiles , 1995 .

[42]  J. Breeden,et al.  The onset of gravothermal oscillations in globular cluster evolution , 1994 .

[43]  Raymond E. White,et al.  Axial Ratios and Orientations for 100 Galactic Globular Star Clusters , 1987 .

[44]  M. Schwarzschild,et al.  A numerical model for a triaxial stellar system in dynamical equilibrium , 1979 .