Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle

[1] Viscous shear in the asthenosphere accommodates relative motion between Earth’s surface plates and underlying mantle, generating lattice-preferred orientation (LPO) in olivine aggregates and a seismically anisotropic fabric. Because this fabric develops with the evolving mantle flow field, observations of seismic anisotropy can constrain asthenospheric flow patterns if the contribution of fossil lithospheric anisotropy is small. We use global viscous mantle flow models to characterize the relationship between asthenospheric deformation and LPO and compare the predicted pattern of anisotropy to a global compilation of observed shear wave splitting measurements. For asthenosphere >500 km from plate boundaries, simple shear rotates the LPO toward the infinite strain axis (ISA, the LPO after infinite deformation) faster than the ISA changes along flow lines. Thus we expect the ISA to approximate LPO throughout most of the asthenosphere, greatly simplifying LPO predictions because strain integration along flow lines is unnecessary. Approximating LPO with the ISA and assuming A-type fabric (olivine a axis parallel to ISA), we find that mantle flow driven by both plate motions and mantle density heterogeneity successfully predicts oceanic anisotropy (average misfit 13). Continental anisotropy is less well fit (average misfit 41), but lateral variations in lithospheric thickness improve the fit in some continental areas. This suggests that asthenospheric anisotropy contributes to shear wave splitting for both continents and oceans but is overlain by a stronger layer of lithospheric anisotropy for continents. The contribution of the oceanic lithosphere is likely smaller because it is thinner, younger, and less deformed than its continental counterpart.

[1]  J. Mitrovica,et al.  Haskell [1935] revisited , 1996 .

[2]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[3]  Bradford H. Hager,et al.  A simple global model of plate dynamics and mantle convection , 1981 .

[4]  R. Allen,et al.  Asthenospheric channeling of the Icelandic upwelling: Evidence from seismic anisotropy , 2005 .

[5]  Louis Moresi,et al.  The accuracy of finite element solutions of Stokes's flow with strongly varying viscosity , 1996 .

[6]  H. H. Hess,et al.  Seismic Anisotropy of the Uppermost Mantle under Oceans , 1964, Nature.

[7]  Donald W. Forsyth The Early Structural Evolution and Anisotropy of the Oceanic Upper Mantle , 1975 .

[8]  P. Molnar,et al.  The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and dens , 1997 .

[9]  P. Silver SEISMIC ANISOTROPY BENEATH THE CONTINENTS: Probing the Depths of Geology , 1996 .

[10]  W. B. Ismail,et al.  An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy , 1998 .

[11]  S. Zhong Role of ocean-continent contrast and continental keels on plate motion, net rotation of lithosphere, and the geoid , 2001 .

[12]  D. McKenzie,et al.  Finite deformation during fluid flow , 1979 .

[13]  Neil M. Ribe,et al.  Timescales for the evolution of seismic anisotropy in mantle flow , 2001 .

[14]  Louis Moresi,et al.  Role of temperature‐dependent viscosity and surface plates in spherical shell models of mantle convection , 2000 .

[15]  M. Gurnis,et al.  Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time , 2003 .

[16]  P. Silver,et al.  Dynamic topography, plate driving forces and the African superswell , 1998, Nature.

[17]  N. Teanby,et al.  Upper mantle anisotropy beneath the Seychelles microcontinent , 2005 .

[18]  Jean-Paul Montagner,et al.  Can seismology tell us anything about convection in the mantle , 1994 .

[19]  S. Solomon,et al.  Shear‐wave splitting beneath the Galápagos archipelago , 2004 .

[20]  P. Silver,et al.  Laboratory and seismological observations of lower mantle isotropy , 1995 .

[21]  M. F. Ashby,et al.  On the rheology of the upper mantle , 1973 .

[22]  Thorsten W. Becker,et al.  Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models , 2006 .

[23]  R. Dietmar Müller,et al.  Digital isochrons of the world's ocean floor , 1997 .

[24]  P. Molnar,et al.  Convective instability of a boundary layer with temperature-and strain-rate-dependent viscosity in terms of ‘available buoyancy’ , 1999 .

[25]  P. Silver,et al.  Small‐scale variations in seismic anisotropy near Kimberley, South Africa , 2002 .

[26]  R. Verma,et al.  Elasticity of some high-density crystals , 1960 .

[27]  T. Jordan The continental tectosphere , 1975 .

[28]  J. Kendall,et al.  Seismic anisotropy in the upper mantle 2. Predictions for current plate boundary flow models , 2002 .

[29]  P. Silver,et al.  The Interpretation of Shear‐Wave Splitting Parameters In the Presence of Two Anisotropic Layers , 1994 .

[30]  S. Karato,et al.  Water-Induced Fabric Transitions in Olivine , 2001, Science.

[31]  Neil M. Ribe,et al.  On the relation between seismic anisotropy and finite strain , 1992 .

[32]  E. Okal,et al.  Evidence for a rheologically strong chemical mantle root beneath the Ontong^Java Plateau , 2001 .

[33]  B. Kennett,et al.  Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia , 2005, Nature.

[34]  Michael E. Wysession,et al.  Shear wave splitting, continental keels, and patterns of mantle flow , 2000 .

[35]  Donald L. Turcotte,et al.  Finite amplitude convective cells and continental drift , 1967, Journal of Fluid Mechanics.

[36]  C. Conrad Convective instability of thickening mantle lithosphere , 2000 .

[37]  C. Conrad,et al.  Detection of upper mantle flow associated with the African Superplume , 2004 .

[38]  Stephen S. Gao,et al.  Seismic Anisotropy, Mantle Fabric, and the Magmatic Evolution of Precambrian Southern Africa , 2004 .

[39]  Stephen S. Gao,et al.  Mantle deformation beneath southern Africa , 2001 .

[40]  D. Kohlstedt,et al.  Melt Segregation and Strain Partitioning: Implications for Seismic Anisotropy and Mantle Flow , 2003, Science.

[41]  W. McDonough,et al.  Thermal structure, thickness and composition of continental lithosphere , 1998 .

[42]  S. Karato,et al.  Lattice preferred orientation of olivine aggregates deformed in simple shear , 1995, Nature.

[43]  C. Conrad,et al.  Influence of continental roots and asthenosphere on plate‐mantle coupling , 2006 .

[44]  R. Russo,et al.  Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy , 1994, Science.

[45]  N. Ribe Seismic anisotropy and mantle flow , 1989 .

[46]  H. Wenk,et al.  Seismic anisotropy of the upper mantle 1. Factors that affect mineral texture and effective elastic properties , 2002 .

[47]  L. Fleitout,et al.  Effect of lateral viscosity variations in the top 300 km on the geoid and dynamic topography , 2003 .

[48]  N. Ribe,et al.  D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle , 2004 .

[49]  Jeffrey Park,et al.  Seismic Anisotropy: Tracing Plate Dynamics in the Mantle , 2002, Science.

[50]  Hendrik Jan van Heijst,et al.  Global transition zone tomography , 2004 .

[51]  Paul G. Silver,et al.  Implications for continental structure and evolution from seismic anisotropy , 1988, Nature.

[52]  C. Wolfe,et al.  Shear-wave splitting and implications for mantle flow beneath the MELT region of the east pacific rise , 1998, Science.

[53]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[54]  Thorsten W. Becker,et al.  Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models , 2003 .

[55]  M. Savage Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? , 1999 .

[56]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[57]  G. Tichy,et al.  Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle , 2004, Nature.

[58]  Seismic anisotropy in the upper mantle , 1979 .

[59]  Timothy H. Dixon,et al.  REVEL: A model for Recent plate velocities from space geodesy , 2002 .

[60]  D. L. Anderson,et al.  Plates, plumes and paradigms , 2005 .

[61]  P. Silver,et al.  The Mantle Flow Field Beneath Western North America , 2002, Science.

[62]  B. Romanowicz,et al.  Global anisotropy and the thickness of continents , 2003, Nature.

[63]  Ulrich R. Christensen,et al.  Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle , 1993 .

[64]  Katherine A. Kelley,et al.  Understanding cratonic flood basalts , 2006 .

[65]  N. Ribe,et al.  A kinematic model for recrystallization and texture development in olivine polycrystals , 2001 .

[66]  A. Cox,et al.  Relative motions between oceanic plates of the Pacific Basin , 1984 .

[67]  J. Lees,et al.  Mantle flow at a slab edge: Seismic anisotropy in the Kamchatka Region , 2001 .

[68]  Richard G. Gordon,et al.  Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions , 1994 .

[69]  Paul G. Silver,et al.  Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations , 1998 .

[70]  Bijaya B. Karki,et al.  Origin of lateral variation of seismic wave velocities and density in the deep mantle , 2001 .

[71]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[72]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[73]  J. Montagner,et al.  The unique dynamics of the Pacific Hemisphere mantle and its signature on seismic anisotropy , 2001 .

[74]  S. Karato,et al.  New type of olivine fabric from deformation experiments at modest water content and low stress , 2004 .

[75]  M. Fouch,et al.  Seismic anisotropy beneath stable continental interiors , 2006 .

[76]  D. L. Anderson,et al.  Present-day plate motion constraint on mantle rheology , 1997 .

[77]  D. Wiens,et al.  A Complex Pattern of Mantle Flow in the Lau Backarc , 2001, Science.

[78]  Jeffrey Park,et al.  B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models , 2005 .

[79]  P. Silver,et al.  Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy , 1998 .

[80]  A. Vauchez,et al.  Upper mantle anisotropy in SE and Central Brazil from SKS splitting: Evidence of asthenospheric flow around a cratonic keel , 2006 .

[81]  S. Solomon Department of terrestrial magnetism , 2000 .

[82]  T. Becker,et al.  Mantle flow under the western United States from shear wave splitting , 2006 .

[83]  T. Becker On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces , 2006 .