Experimental determination of visibility modeling parameters for aircraft

The Federal Aviation Administration (FAA) is presently engaged in research to quantify the visibility of aircraft under two important scenarios: aircraft observed directly by human operators in air traffic control towers (ATCT's), and aircraft observed by human operators through unmanned aerial vehicle (UAV) sensors viewed through ground-based display systems. Previously, an ATCT visibility analysis software tool (FAA Vis) was developed by the U.S. Army Research Laboratory (ARL) in collaboration with the U.S. Army's Night Vision and Electronic Sensors Directorate (NVESD) and the FAA. This tool predicts the probability of detection, recognition, and identification of various aircraft by human observers as a function of range and ATCT height. More recently, a baseline version of a UAV See-And- Avoid visibility analysis software tool was also developed by ARL, again in collaboration with NVESD and the FAA. Important to the calibration of these tools is the empirical determination of target discrimination difficulty criteria. Consequently, a set of human perception experiments were designed and conducted to empirically determine the target recognition and identification discrimination difficulty criteria for a representative set of aircraft. This paper will report on the results and analyses of those experiments.