Modified DC-link voltage balancing algorithm for a 3-level neutral point clamped (NPC) traction inverter based electric vehicle PMSM drive

This paper presents a modified DC bus voltage balancing algorithm for a neutral-point clamped (NPC) three-level inverter based motor drives for permanent magnet synchronous machines (PMSM) used in electric vehicle applications. The topology used for DC bus voltage balancing is based on nearest three vectors (N3V) with a space vector pulse width modulation scheme (SV-PWM). In this scheme, the voltage space vectors are rearranged based on the four redundant small voltage vectors, to keep the two DC link capacitor voltages in their specific tolerance bands, even during fast transient conditions of the machine. This topology provides high stability and lower switching loss compared to the conventional N3V scheme. The performance of the proposed scheme is verified by simulation and hardware experimental tests.

[1]  Joan Rocabert,et al.  Closed-Loop Control of a Three-Phase Neutral-Point-Clamped Inverter Using an Optimized Virtual-Vector-Based Pulsewidth Modulation , 2008, IEEE Transactions on Industrial Electronics.

[2]  Marcelo A. Pérez,et al.  Multilevel Converters: An Enabling Technology for High-Power Applications , 2009, Proceedings of the IEEE.

[3]  F. Wang Multilevel PWM VSIs , 2004, IEEE Industry Applications Magazine.

[4]  D. Boroyevich,et al.  A Carrier-Based PWM Strategy With Zero-Sequence Voltage Injection for a Three-Level Neutral-Point-Clamped Converter , 2012, IEEE Transactions on Power Electronics.

[5]  Hirofumi Akagi,et al.  A New Neutral-Point-Clamped PWM Inverter , 1981, IEEE Transactions on Industry Applications.

[6]  S. Bernet,et al.  A comparison of three-level converters versus two-level converters for low-voltage drives, traction, and utility applications , 2005, IEEE Transactions on Industry Applications.

[7]  D. Boroyevich,et al.  Limits of the neutral-point balance in back-to-back-connected three-level converters , 2004, IEEE Transactions on Power Electronics.

[8]  A.M. Hava,et al.  A novel neutral point potential stabilization technique using the information of output current polarities and voltage vector , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[9]  Dushan Boroyevich,et al.  Evaluation of the low-frequency neutral-point voltage oscillations in the three-level inverter , 2005, IEEE Transactions on Industrial Electronics.

[10]  D. Boroyevich,et al.  The nearest three virtual space vector PWM - a modulation for the comprehensive neutral-point balancing in the three-level NPC inverter , 2004, IEEE Power Electronics Letters.

[11]  H. Akagi,et al.  Analysis of variation of neutral point potential in neutral-point-clamped voltage source PWM inverters , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[12]  Dushan Boroyevich,et al.  Fast-Processing Modulation Strategy for the Neutral-Point-Clamped Converter With Total Elimination of Low-Frequency Voltage Oscillations in the Neutral Point , 2007, IEEE Transactions on Industrial Electronics.

[13]  Mark Sumner,et al.  Neutral point control for multi-level inverters: theory, design and operational limitations , 1997, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.

[14]  D. G. Holmes,et al.  Optimal pulse width modulation for three-level inverters , 2003, IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03..

[15]  Philippe Baudesson,et al.  A New Carrier-Based PWM Providing Common-Mode-Current Reduction and DC-Bus Balancing for Three-Level Inverters , 2007, IEEE Transactions on Industrial Electronics.

[16]  Yongdong Li,et al.  Analysis and Calculation of Zero-Sequence Voltage Considering Neutral-Point Potential Balancing in Three-Level NPC Converters , 2010, IEEE Transactions on Industrial Electronics.

[17]  T. Kawabata,et al.  Space voltage vector-based new PWM method for large capacity three-level GTO inverter , 1992, Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation.

[18]  B. P. Schmitt,et al.  Retrofit of fixed speed induction motors with medium voltage drive converters using NPC three-level inverter high-voltage IGBT based topology , 2001, ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570).

[19]  D. Boroyevich,et al.  Fast-processing modulation strategy for the neutral-point-clamped converter with total elimination of the low-frequency voltage oscillations in the neutral point , 2005, 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005..