Gaussian mixtures for anomaly detection in crowded scenes
暂无分享,去创建一个
[1] Francesco G. B. De Natale,et al. Learning and matching human activities using regular expressions , 2010, 2010 IEEE International Conference on Image Processing.
[2] Mubarak Shah,et al. Visual crowd surveillance through a hydrodynamics lens , 2011, Commun. ACM.
[3] Marco Bertini,et al. Non-parametric anomaly detection exploiting space-time features , 2010, ACM Multimedia.
[4] M. Montgomery. The Urban Transformation of the Developing World , 2008, Science.
[5] Nuno Vasconcelos,et al. Anomaly detection in crowded scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[6] Christian Bauckhage,et al. Loveparade 2010: Automatic video analysis of a crowd disaster , 2012, Comput. Vis. Image Underst..
[7] J.-Y. Bouguet,et al. Pyramidal implementation of the lucas kanade feature tracker , 1999 .
[8] Olga Veksler,et al. Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[9] Ivan Laptev,et al. Data-driven crowd analysis in videos , 2011, ICCV.
[10] Louis Kratz,et al. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models , 2009, CVPR.
[11] Alessio Del Bue,et al. Optimizing interaction force for global anomaly detection in crowded scenes , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).
[12] Francesco G. B. De Natale,et al. Syntactic matching of pedestrian trajectories for behavioral analysis , 2008, 2008 IEEE 10th Workshop on Multimedia Signal Processing.
[13] Francesco G. B. De Natale,et al. Object Trajectory Analysis in Video Indexing and Retrieval Applications , 2010, Video Search and Mining.
[14] W. Eric L. Grimson,et al. Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).