The generalized boundary curve — a common method for automatic nominal design centering of analog circuits

In this paper a new method for analog circuit sizing with respect to manufacturing and operating tolerances is presented. Two types of robustness objectives are presented, i.e. parameter distances for the nominal design and worst case distances for the design centering. Moreover, the generalized boundary curve is presented as a method to determine a parameter correction within an iterative trust region algorithm. Results show that a significant reduction in computational costs is achieved using the presented robustness objectives and generalized boundary curve.

[1]  J. Eckmuller,et al.  Hierarchical characterization of analog integrated CMOS circuits , 1998, Proceedings Design, Automation and Test in Europe.

[2]  Rob A. Rutenbar,et al.  Synthesis of high-performance analog circuits in ASTRX/OBLX , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Helmut E. Graeb,et al.  Hierarchical characterization of analog integrated CMOS circuits , 1998, DATE.

[4]  John E. Purviance,et al.  Yield and Reliability in Microwave Circuit and System Design , 1993 .

[5]  Hany L. Abdel-Malek,et al.  The ellipsoidal technique for design centering and region approximation , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Robert Schwencker Technischer Automatic Design Centering of Analog Integrated Circuits Based on the Generalized Boundary Curve of Multiple Robustness Objectives , 1999 .

[7]  M. A. Styblinski,et al.  Yield and variability optimization of integrated circuits , 1995 .

[8]  Wojciech Maly,et al.  VLSI Design for Manufacturing: Yield Enhancement , 1989 .

[9]  John W. Bandler,et al.  Circuit optimization: the state of the art , 1988 .

[10]  Ute Feldmann,et al.  Algorithms for modern circuit simulation , 1992 .

[11]  Stephen P. Boyd,et al.  GPCAD: a tool for CMOS op-amp synthesis , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[12]  Kurt Antreich,et al.  Automating the sizing of analog CMOS circuits by consideration of structural constraints , 1999, Design, Automation and Test in Europe Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078).

[13]  Stephen W. Director,et al.  The linearized performance penalty (LPP) method for optimization of parametric yield and its reliability , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Kevin S. Eshbaugh,et al.  Generation of correlated parameters for statistical circuit simulation , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Kurt Antreich,et al.  Circuit analysis and optimization driven by worst-case distances , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  J. Eckmuller,et al.  Fast calculation of analog circuits' feasibility regions by low level functional measures , 1998, 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No.98EX196).

[17]  Georges Gielen,et al.  A behavioral signal path modeling methodology for qualitative insight in and efficient sizing of CMOS opamps , 1997, ICCAD 1997.

[18]  Andrew R. Conn,et al.  JiffyTune: circuit optimization using time-domain sensitivities , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..