Compositionally graded metals: A new frontier of additive manufacturing

The current work provides an overview of the state-of-the-art in polymer and metal additive manufacturing and provides a progress report on the science and technology behind gradient metal alloys produced through laser deposition. The research discusses a road map for creating gradient metals using additive manufacturing, demonstrates basic science results obtainable through the methodology, shows examples of prototype gradient hardware, and suggests that Compositionally Graded Metals is an emerging field of metallurgy research.

[1]  Bernhard Mueller,et al.  Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing , 2012 .

[2]  H. Fraser,et al.  Laser deposition of compositionally graded titanium–vanadium and titanium–molybdenum alloys , 2003 .

[3]  M. Demetriou,et al.  Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility , 2008, Proceedings of the National Academy of Sciences.

[4]  M. L. Griffith,et al.  Understanding the Microstructure and Properties of Components Fabricated by Laser Engineered Net Shaping (LENS) , 2000 .

[5]  L. Murr,et al.  Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. , 2009, Journal of the mechanical behavior of biomedical materials.

[6]  Neil Hopkinson,et al.  Rapid manufacturing : an industrial revolution for the digital age , 2006 .

[7]  K. Osakada,et al.  Rapid Manufacturing of Metal Components by Laser Forming , 2006 .

[8]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[9]  Philip Dickens,et al.  Implications on design of rapid manufacturing , 2003 .

[10]  S. Kelly,et al.  Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part II. Thermal modeling , 2004 .

[11]  S. Kelly,et al.  Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization , 2004 .

[12]  Zi-kui Liu First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .

[13]  M. B. Bever,et al.  Gradients in composite materials , 1972 .

[14]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[15]  Peter C. Collins,et al.  Microstructural evolution in laser deposited compositionally graded α/β titanium-vanadium alloys , 2003 .

[16]  Bahar Sener,et al.  The Potential for the Bespoke Industrial Designer , 2003 .

[17]  L. Xue,et al.  Free-form laser consolidation for producing metallurgically sound and functional components , 2000 .

[18]  Larry Kaufman,et al.  Computer calculation of phase diagrams with special reference to refractory metals , 1970 .

[19]  Karen M. Taminger,et al.  Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process , 2003 .

[20]  M. B. Bever,et al.  Gradients in polymeric materials , 1972 .

[21]  Weidong Huang,et al.  Microstructure evolution of laser solid forming of Ti-Al-V ternary system alloys from blended elemental powders , 2011 .

[22]  Douglas C. Hofmann,et al.  Designing metallic glass matrix composites with high toughness and tensile ductility , 2008, Nature.

[23]  Peter C. Collins,et al.  Direct laser deposition of alloys from elemental powder blends , 2001 .

[24]  Antonio Crespo,et al.  Finite element analysis of the rapid manufacturing of Ti–6Al–4V parts by laser powder deposition , 2010 .