Non-local Regularization of Inverse Problems

This article proposes a new framework to regularize linear inverse problems using the total variation on non-local graphs. This non-local graph allows to adapt the penalization to the geometry of the underlying function to recover. A fast algorithm computes iteratively both the solution of the regularization process and the non-local graph adapted to this solution. We show numerical applications of this method to the resolution of image processing inverse problems such as inpainting, super-resolution and compressive sampling.

[1]  L. Shires Image , 2018, Victorian Literature and Culture.

[2]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[4]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[5]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[6]  Mohamed-Jalal Fadili,et al.  Learning the Morphological Diversity , 2010, SIAM J. Imaging Sci..

[7]  Michael Elad,et al.  Advances and challenges in super‐resolution , 2004, Int. J. Imaging Syst. Technol..

[8]  Patrick Pérez,et al.  Region filling and object removal by exemplar-based image inpainting , 2004, IEEE Transactions on Image Processing.

[9]  R. Coifman,et al.  A general framework for adaptive regularization based on diffusion processes on graphs , 2006 .

[10]  Simon Masnou,et al.  Disocclusion: a variational approach using level lines , 2002, IEEE Trans. Image Process..

[11]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[12]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[13]  Guy Gilboa,et al.  Nonlocal evolutions for image regularization , 2007, Electronic Imaging.

[14]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[16]  Bernhard Schölkopf,et al.  Regularization on Discrete Spaces , 2005, DAGM-Symposium.

[17]  Guillermo Sapiro,et al.  Fast image and video denoising via nonlocal means of similar neighborhoods , 2005, IEEE Signal Processing Letters.

[18]  Ron Kimmel,et al.  A Short- Time Beltrami Kernel for Smoothing Images and Manifolds , 2007, IEEE Transactions on Image Processing.

[19]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[20]  Marc Levoy,et al.  Gaussian KD-trees for fast high-dimensional filtering , 2009, ACM Trans. Graph..

[21]  Ronald R. Coifman,et al.  Regularization on Graphs with Function-adapted Diffusion Processes , 2008, J. Mach. Learn. Res..

[22]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[23]  Mehran Ebrahimi,et al.  Solving the Inverse Problem of Image Zooming Using "Self-Examples" , 2007, ICIAR.

[24]  Leonid P. Yaroslavsky,et al.  Digital Picture Processing , 1985 .

[25]  Saïd Ladjal,et al.  Exemplar-Based Inpainting from a Variational Point of View , 2010, SIAM J. Math. Anal..

[26]  G. Peyré Image Processing with Non-local Spectral Bases , 2008 .

[27]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[28]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[29]  John L. Shanks,et al.  Computation of the Fast Walsh-Fourier Transform , 1969, IEEE Transactions on Computers.

[30]  J. Morel,et al.  On image denoising methods , 2004 .

[31]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[32]  J. Aujol,et al.  Some algorithms for total variation based image restoration , 2008 .

[33]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[34]  G. F. Roach,et al.  Inverse problems and imaging , 1991 .

[35]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[36]  Stanley Osher,et al.  Deblurring and Denoising of Images by Nonlocal Functionals , 2005, Multiscale Model. Simul..

[37]  Abderrahim Elmoataz,et al.  Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and Manifold Processing , 2008, IEEE Transactions on Image Processing.

[38]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[39]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004 .

[40]  Guillermo Sapiro,et al.  Exemplar-Based Interpolation of Sparsely Sampled Images , 2009, EMMCVPR.

[41]  S. Mallat A wavelet tour of signal processing , 1998 .

[42]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[43]  Stéphane Mallat,et al.  Bandelet Image Approximation and Compression , 2005, Multiscale Model. Simul..

[44]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[45]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[46]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[47]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[48]  Michael Elad,et al.  Example-based single document image super-resolution: a global MAP approach with outlier rejection , 2007, Multidimens. Syst. Signal Process..

[49]  L. P. I︠A︡roslavskiĭ Digital picture processing : an introduction , 1985 .

[50]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[51]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[52]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[53]  François Malgouyres,et al.  Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis , 2001, SIAM J. Numer. Anal..

[54]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[55]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[56]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[57]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[58]  J. Morel,et al.  Non local demosaicing , 2007 .

[59]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[60]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[61]  Gabriel Peyré,et al.  Sparse Modeling of Textures , 2009, Journal of Mathematical Imaging and Vision.

[62]  Gabriel Peyré,et al.  Texture Synthesis with Grouplets , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[64]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[65]  Gabriel Peyré,et al.  Image Processing with Nonlocal Spectral Bases , 2008, Multiscale Model. Simul..

[66]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[67]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[68]  Jean-François Aujol,et al.  Some First-Order Algorithms for Total Variation Based Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[69]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .