Evolutionary Entropy: A Predictor of Body Size, Metabolic Rate and Maximal Life Span

Body size of organisms spans 24 orders of magnitude, and metabolic rate and life span present comparable differences across species. This article shows that this variation can be explained in terms of evolutionary entropy, a statistical parameter which characterizes the robustness of a population, and describes the uncertainty in the age of the mother of a randomly chosen newborn. We show that entropy also has a macroscopic description: It is linearly related to the logarithm of the variables body size, metabolic rate, and life span. Furthermore, entropy characterizes Darwinian fitness, the efficiency with which a population acquires and converts resources into viable offspring. Accordingly, entropy predicts the outcome of natural selection in populations subject to different classes of ecological constraints. This predictive property, when integrated with the macroscopic representation of entropy, is the basis for enormous differences in morphometric and life-history parameters across species.

[1]  Johan Bollen,et al.  The evolution of complexity , 1999 .

[2]  J. M. Cattell,et al.  “The Primary Factors of Organic Evolution” , 1896, Nature.

[3]  I. Ohta,et al.  Fertility, longevity and intrinsic rate of increase of Aphidius gifuensis Ashmead (Hymenoptera : Braconidae) on the green peach aphid, Myzus persicae (Sulzer)(Homoptera : Aphididae) , 2004 .

[4]  Max Kleiber,et al.  The Fire of Life: An Introduction to Animal Energetics , 1975 .

[5]  Mortality plateaus and directionality theory , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  Geoffrey B. West,et al.  The predominance of quarter-power scaling in biology , 2004 .

[7]  Jean Clobert,et al.  Demographic Stochasticity and Social Mating System in the Process of Extinction of Small Populations: The Case of Passerines Introduced to New Zealand , 1999, The American Naturalist.

[8]  F. T. Jung The Fire of Life , 1962 .

[9]  Lloyd Demetrius,et al.  The origin of allometric scaling laws in biology. , 2006, Journal of theoretical biology.

[10]  K. Talebi,et al.  Impacts of the pesticides imidacloprid, propargite, and pymetrozine on Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae): IOBC and life table assays , 2007, BioControl.

[11]  Leslie model for predatory gall-midge population , 2000 .

[12]  Mark G. Tjoelker,et al.  Universal scaling of respiratory metabolism, size and nitrogen in plants , 2006, Nature.

[13]  Takahiko Sato,et al.  Biological studies on three Micromus species in Japan(Neuroptera: Hemerobiidae) to evaluate their potential as biological control agents against aphids : 1. Thermal effects on development and reproduction , 2004 .

[14]  K. Sahu,et al.  A Re-examination of the , 2001 .

[15]  Mark V. Lomolino,et al.  Body Size of Mammals on Islands: The Island Rule Reexamined , 1985, The American Naturalist.

[16]  E. Cope The primary factors of organic evolution , 2007 .

[17]  R. Leopold,et al.  Development and Reproduction of the Egg Parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae), as a Function of Temperature , 2006 .

[18]  V. Baniameri,et al.  Life table and age-dependent reproduction of the predatory bug Orius niger Wolff (Heteroptera : Anthocoridae) at three constant temperatures : a demographic analysis , 2005 .

[19]  Gunter Ochs,et al.  Complexity and demographic stability in population models. , 2004, Theoretical population biology.

[20]  I. Ohta,et al.  Life History Parameters of Myzus persicae (Sulzer) (Homoptera: Aphididae) Reared on Qing-geng-cai at Four Constant Temperatures. , 2002 .

[21]  M. Oli,et al.  The Relative Importance of Life‐History Variables to Population Growth Rate in Mammals: Cole’s Prediction Revisited , 2003, The American Naturalist.

[22]  L. Demetrius,et al.  Measures of fitness and demographic stability. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Timothy J. Lysyk Relationships Between Temperature and Life History Parameters of Muscidifurax raptor (Hymenoptera: Pteromalidae) , 2001 .

[24]  L. Demetrius,et al.  Directionality theory: an empirical study of an entropic principle in life‐history evolution , 2005, Proceedings of the Royal Society B: Biological Sciences.

[25]  Gunther J. Eble,et al.  The evolution of complexity , 2001, Complex..

[26]  D. S. Glazier,et al.  Beyond the ‘3/4‐power law’: variation in the intra‐and interspecific scaling of metabolic rate in animals , 2005, Biological reviews of the Cambridge Philosophical Society.

[27]  M. Thomas-Orillard,et al.  Virus C de la drosophile et dynamique d'une population hôte , 1996 .

[28]  L. Demetrius,et al.  Directionality principles in thermodynamics and evolution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  W. Calder Size, Function, and Life History , 1988 .

[30]  J. Weitz,et al.  Re-examination of the "3/4-law" of metabolism. , 2000, Journal of theoretical biology.

[31]  L. Demetrius,et al.  Demographic parameters and natural selection. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[32]  晋 徳丸,et al.  トマトハモグリバエ, マメハモグリバエおよびナスハモグリバエの発育に及ぼす温度・日長の影響ならびに増殖能力 , 2003 .

[33]  Jean-Dominique Lebreton,et al.  Using Demographic Invariants to Detect Overharvested Bird Populations from Incomplete Data , 2005 .

[34]  Lloyd Demetrius,et al.  Directionality theory and the evolution of body size , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  J.D.H. Smith A macroscopic approach to demography , 2004, Journal of mathematical biology.

[36]  João Pedro de Magalhães,et al.  An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. , 2007, The journals of gerontology. Series A, Biological sciences and medical sciences.

[37]  Lloyd Demetrius,et al.  Darwinian fitness. , 2007, Theoretical population biology.

[38]  L. Demetrius,et al.  Darwinian fitness and the intensity of natural selection: studies in sensitivity analysis. , 2007, Journal of theoretical biology.

[39]  Lloyd Demetrius,et al.  Statistical mechanics and population biology , 1983 .

[40]  Directionality theory: a computational study of an entropic principle in evolutionary processes , 2005, Proceedings of the Royal Society B: Biological Sciences.

[41]  B. O. Wolf,et al.  The Allometry of Avian Basal Metabolic Rate: Good Predictions Need Good Data , 2004, Physiological and Biochemical Zoology.